参数资料
型号: PIC16C782-I/P
厂商: Microchip Technology
文件页数: 162/186页
文件大小: 0K
描述: IC MCU CMOS 8BIT 2K 20MHZ 20-DIP
产品培训模块: Asynchronous Stimulus
标准包装: 22
系列: PIC® 16C
核心处理器: PIC
芯体尺寸: 8-位
速度: 20MHz
外围设备: 欠压检测/复位,POR,PWM,WDT
输入/输出数: 13
程序存储器容量: 3.5KB(2K x 14)
程序存储器类型: OTP
RAM 容量: 128 x 8
电压 - 电源 (Vcc/Vdd): 4 V ~ 5.5 V
数据转换器: A/D 8x8b; D/A 1x8b
振荡器型: 内部
工作温度: -40°C ~ 85°C
封装/外壳: 20-DIP(0.300",7.62mm)
包装: 管件
配用: DVA16XP202-ND - ADAPTER DEVICE PIC16C781/782
DM163012-ND - BOARD DEMO PICDEM FOR 16C781/782
AC164028-ND - MODULE SKT PROMATEII 20SOIC/DIP
其它名称: PIC16C782I/P
第1页第2页第3页第4页第5页第6页第7页第8页第9页第10页第11页第12页第13页第14页第15页第16页第17页第18页第19页第20页第21页第22页第23页第24页第25页第26页第27页第28页第29页第30页第31页第32页第33页第34页第35页第36页第37页第38页第39页第40页第41页第42页第43页第44页第45页第46页第47页第48页第49页第50页第51页第52页第53页第54页第55页第56页第57页第58页第59页第60页第61页第62页第63页第64页第65页第66页第67页第68页第69页第70页第71页第72页第73页第74页第75页第76页第77页第78页第79页第80页第81页第82页第83页第84页第85页第86页第87页第88页第89页第90页第91页第92页第93页第94页第95页第96页第97页第98页第99页第100页第101页第102页第103页第104页第105页第106页第107页第108页第109页第110页第111页第112页第113页第114页第115页第116页第117页第118页第119页第120页第121页第122页第123页第124页第125页第126页第127页第128页第129页第130页第131页第132页第133页第134页第135页第136页第137页第138页第139页第140页第141页第142页第143页第144页第145页第146页第147页第148页第149页第150页第151页第152页第153页第154页第155页第156页第157页第158页第159页第160页第161页当前第162页第163页第164页第165页第166页第167页第168页第169页第170页第171页第172页第173页第174页第175页第176页第177页第178页第179页第180页第181页第182页第183页第184页第185页第186页
2001 Microchip Technology Inc.
Preliminary
DS41171A-page 75
PIC16C781/782
9.4.1
FASTER CONVERSION/LOWER
RESOLUTION TRADE-OFF
Not all applications require a result having 8-bits of res-
olution. Some may instead, require a faster conversion
time. The ADC module allows users to make a trade-off
of conversion speed for resolution. Regardless of the
resolution required, the acquisition time is the same. To
speed up the conversion, the clock source of the ADC
module may be switched during the conversion, so that
the TAD time violates the minimum specified time (see
the applicable Electrical Specification). Once the switch
is made, all the following ADC result bits are invalid
(see ADC Conversion Timing in the Electrical Specifi-
cations section). The clock source may only be
switched between the three oscillator options (it cannot
be switched from/to RC). The equation to determine
the time before the oscillator must be switched for a
desired resolution is as follows:
Conversion time = 2TAD + N TAD + (8 - N)(2TOSC)
Where: N = number of bits of resolution required.
Since the TAD is based on the device oscillator, the user
must employ some method (such as a timer, software
loop, etc.) to determine when the ADC oscillator must
be changed.
9.5
ADC Operation During SLEEP
The ADC module can operate during SLEEP mode.
This requires that the ADC clock source be set to RC
(ADCS1:ADCS0 = 11). When the RC clock source is
selected, the ADC module waits one instruction cycle
before starting the conversion. This allows the SLEEP
instruction to be executed, which eliminates all digital
switching noise from the conversion. When the conver-
sion is completed the GO/DONE bit is cleared, and the
result is loaded into the ADRES register. If the ADC
interrupt is enabled, the device awakens from SLEEP.
If the ADC interrupt is not enabled, the ADC module is
turned off, although the ADON bit remains set.
When the ADC clock source is another clock option
(not RC), a SLEEP instruction causes the present con-
version to be aborted and the ADC module to be turned
off. The ADON bit remains set.
Turning off the ADC places the ADC module in its low-
est current consumption state.
9.6
ADC Accuracy/Error
The absolute accuracy (absolute error) specified for the
ADC converter includes the sum of all contributions for:
Offset error
Gain error
Quantization error
Integral non-linearity error
Differential non-linearity error
Monotonicity
The absolute error is defined as the maximum devia-
tion from an actual transition versus an ideal transition
for any code. The absolute error of the ADC converter
is specified as < ±1 LSb for ADCREF = VDD (over the
device’s specified operating range). However, the
accuracy of the ADC converter degrades as VDD
diverges from VREF.
For a given range of analog inputs, the output digital
code will be the same. This is due to the quantization of
the analog input to a digital code. Quantization error
is typically ± 1/2 LSb and is inherent in the analog to
digital conversion process. The only way to reduce
quantization error is to use an ADC with greater resolu-
tion of the ADC converter.
Offset error measures the first actual transition of a
code versus the first ideal transition of a code. Offset
error shifts the entire transfer function. Offset error can
be calibrated out of a system, or introduced into a sys-
tem, through the interaction of the total leakage current
and source impedance at the analog input.
Gain error measures the maximum deviation of the
last actual transition and the last ideal transition
adjusted for offset error. This error appears as a
change in slope of the transfer function. The difference
in gain error to full scale error is that full scale does not
take offset error into account. Gain error can be cali-
brated out in software.
Linearity error refers to the uniformity of the code
changes. Linearity errors cannot be calibrated out of
the system. Integral non-linearity error measures the
actual code transition versus the ideal code transition,
adjusted by the gain error for each code. Differential
non-linearity measures the maximum actual code
width versus the ideal code width. This measure is
unadjusted.
If the linearity errors are very large, the ADC may
become non-monotonic. This occurs when the digital
values for one or more input voltages are less than the
value for a lower input voltage.
Note:
For the ADC module to operate in SLEEP,
the A/D clock source must be set to RC
(ADCS1:ADCS0 = 11). To perform an ADC
conversion in SLEEP, ensure the SLEEP
instruction immediately follows the instruc-
tion that sets the GO/DONE bit.
相关PDF资料
PDF描述
VI-JTV-IY-B1 CONVERTER MOD DC/DC 5.8V 50W
PIC16CE625-04E/SS IC MCU OTP 2KX14 EE COMP 20SSOP
VI-JTT-IY-B1 CONVERTER MOD DC/DC 6.5V 50W
VI-JT0-IY-B1 CONVERTER MOD DC/DC 5V 50W
PIC16C62B-20I/SO IC MCU OTP 2KX14 PWM 28SOIC
相关代理商/技术参数
参数描述
PIC16C782T-E/SO 功能描述:8位微控制器 -MCU w/Adv Analog 20MHz RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC16C782T-E/SS 功能描述:8位微控制器 -MCU w/Adv Analog 20MHz RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC16C782T-I/SO 功能描述:8位微控制器 -MCU 3.5KB 128 RAM 16 I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC16C782T-I/SS 功能描述:8位微控制器 -MCU 3.5KB 128 RAM 16 I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC16C8404ISO 制造商:MICROCHIP 功能描述:New