参数资料
型号: PIC16F716-I/ML
厂商: Microchip Technology
文件页数: 112/136页
文件大小: 0K
描述: IC PIC MCU FLASH 2KX14 28QFN
标准包装: 61
系列: PIC® 16F
核心处理器: PIC
芯体尺寸: 8-位
速度: 20MHz
外围设备: 欠压检测/复位,POR,PWM,WDT
输入/输出数: 13
程序存储器容量: 3.5KB(2K x 14)
程序存储器类型: 闪存
RAM 容量: 128 x 8
电压 - 电源 (Vcc/Vdd): 2 V ~ 5.5 V
数据转换器: A/D 4x8b
振荡器型: 内部
工作温度: -40°C ~ 85°C
封装/外壳: 28-VQFN 裸露焊盘
包装: 管件
2007 Microchip Technology Inc.
DS41206B-page 75
PIC16F716
9.13
Power-down Mode (Sleep)
Power-Down mode is entered by executing a SLEEP
instruction.
If enabled, the Watchdog Timer will be cleared but
keeps running, the PD bit of the STATUS register is
cleared, the TO of the STATUS register bit is set, and
the oscillator driver is turned off. The I/O ports maintain
the status they had, before the SLEEP instruction was
executed (driving high, low or high-impedance).
For lowest current consumption in this mode, place all
I/O pins at either VDD or VSS, ensure no external
circuitry is drawing current from the I/O pin,
power-down the A/D and the disable external clocks.
Pull all I/O pins that are high-impedance inputs, high or
low externally, to avoid switching currents caused by
floating inputs. The T0CKI input should also be at VDD
or VSS for lowest current consumption. The
contribution from on-chip pull-ups on PORTB should be
considered.
The MCLR pin must be at a logic high level (parameter
D042).
9.13.1
WAKE-UP FROM SLEEP
The device can wake-up from Sleep through one of the
following events:
1.
External Reset input on MCLR pin.
2.
Watchdog Timer Wake-up (if WDT was
enabled).
3.
Interrupt from INT pin, RB port change or some
peripheral interrupts.
External MCLR Reset will cause a device Reset. All
other events are considered a continuation of program
execution and cause a “wake-up”. The TO and PD bits
in the STATUS register can be used to determine the
cause of device Reset. The PD bit, which is set on
power-up, is cleared when Sleep is invoked. The TO bit
is cleared if a WDT time-out occurred (and caused
wake-up).
The following peripheral interrupts can wake the device
from Sleep:
1.
TMR1 interrupt. Timer1 must be operating as an
asynchronous counter.
2.
ECCP capture mode interrupt.
3.
ADC running in ADRC mode.
Other peripherals cannot generate interrupts, since
during Sleep, no on-chip clocks are present.
When the SLEEP instruction is being executed, the next
instruction (PC + 1) is pre-fetched. For the device to
wake-up through an interrupt event, the corresponding
interrupt enable bit must be set (enabled). Wake-up is
regardless of the state of the GIE bit. If the GIE bit is
clear (disabled), the device continues execution at the
instruction after the SLEEP instruction. If the GIE bit is
set (enabled), the device executes the instruction after
the SLEEP instruction and then branches to the
interrupt address (0004h). In cases where the
execution of the instruction following SLEEP is not
desirable, the user should have a NOP after the SLEEP
instruction.
9.13.2
WAKE-UP USING INTERRUPTS
When global interrupts are disabled (GIE cleared) and
any interrupt source has both its interrupt enable bit
and interrupt flag bit set, one of the following will occur:
If the interrupt occurs before the execution of a
SLEEP
instruction, the SLEEP instruction will com-
plete as a NOP. Therefore, the WDT and WDT
postscaler will not be cleared, the TO bit will not
be set and PD bits will not be cleared.
If the interrupt occurs during or after the execu-
tion of a SLEEP instruction, the device will imme-
diately wake-up from Sleep. The SLEEP
instruction will be completely executed before the
wake-up. Therefore, the WDT and WDT
postscaler will be cleared, the TO bit will be set
and the PD bit will be cleared.
Even if the flag bits were checked before executing a
SLEEP
instruction, it may be possible for flag bits to
become set before the SLEEP instruction completes. To
determine whether a SLEEP instruction executed, test
the PD bit. If the PD bit is set, the SLEEP instruction
was executed as a NOP.
To ensure that the WDT is cleared, a CLRWDT
instruction should be executed before a SLEEP
instruction.
相关PDF资料
PDF描述
PIC16F721-I/SS MCU PIC 4K FLASH 20-SSOP
PIC16F723A-I/MV MCU PIC 7KB FLASH XLP 28-UQFN
PIC16F727-E/PT IC PIC MCU FLASH 8KX14 44-TQFP
PIC16F72T-I/ML IC PIC MCU FLASH 2KX14 28-QFN
PIC16F77-I/PT IC MCU FLASH 8KX14 A/D 44TQFP
相关代理商/技术参数
参数描述
PIC16F716T-E/SO 功能描述:8位微控制器 -MCU 3.5KB 128 RAM 13 I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC16F716T-E/SS 功能描述:8位微控制器 -MCU 3.5KB 128 RAM 13 I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC16F716T-I/ML 制造商:Microchip Technology Inc 功能描述:MCU 8BIT RISC 28KB FLASH 2.5V/ - Tape and Reel
PIC16F716T-I/SO 功能描述:8位微控制器 -MCU 3.5KB 128 RAM 13 I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC16F716T-I/SS 功能描述:8位微控制器 -MCU 3.5KB 128 RAM 13 I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT