参数资料
型号: SI4739-C40-GMR
厂商: Silicon Laboratories Inc
文件页数: 25/42页
文件大小: 0K
描述: IC RX FM/WB RAD RDS/RBDS 20UQFN
标准包装: 2,500
频率: 520kHz ~ 1.71MHz,64MHz ~ 108MHz,162.4MHz ~ 162.55MHz
调制或协议: AM,FM,WB
应用: 通用
电流 - 接收: 19.9mA
数据接口: PCB,表面贴装
天线连接器: PCB,表面贴装
特点: 配有 RSSI
电源电压: 2.7 V ~ 5.5 V
工作温度: -20°C ~ 85°C
封装/外壳: 20-UFQFN 裸露焊盘
供应商设备封装: 20-QFN(3x3)
包装: 带卷 (TR)
Si4736/37/38/39-C40
For read operations, after the Si4736/37/38/39 has
acknowledged the control byte, it will drive an 8-bit data
byte on SDIO, changing the state of SDIO on the falling
edge of SCLK. The user acknowledges each data byte
by driving SDIO low for one cycle, on the next falling
edge of SCLK. If a data byte is not acknowledged, the
transaction will end. The user may read up to 16 data
bytes in a single 2-wire transaction. These bytes contain
the response data from the Si4736/37/38/39.
A 2-wire transaction ends with the STOP condition,
which occurs when SDIO rises while SCLK is high.
For details on timing specifications and diagrams, refer
to Table 5, “2-Wire Control Interface Characteristics” on
5.15.3. SPI Control Interface Mode
When selecting SPI mode, the user must ensure that a
rising edge of SCLK does not occur within 300 ns
before the rising edge of RST.
SPI bus mode uses the SCLK, SDIO, and SEN pins for
read/write operations. The system controller can
choose to receive read data from the device on either
SDIO or GPO1. A transaction begins when the system
controller drives SEN = 0. The system controller then
pulses SCLK eight times, while driving an 8-bit control
byte serially on SDIO. The device captures the data on
rising edges of SCLK. The control byte must have one
of five values:
page 7; Figure 2, “2-Wire Control Interface Read and
Write Timing Parameters,” on page 8, and Figure 3, “2-
Wire Control Interface Read and Write Timing Diagram,”
on page 8.
5.15.2. 3-Wire Control Interface Mode
When selecting 3-wire mode, the user must ensure that
a rising edge of SCLK does not occur within 300 ns
before the rising edge of RST.
The 3-wire bus mode uses the SCLK, SDIO, and SEN_
?
?
?
?
?
0x48 = write a command (controller drives 8
additional bytes on SDIO).
0x80 = read a response (device drives 1additional
byte on SDIO).
0xC0 = read a response (device drives 16 additional
bytes on SDIO).
0xA0 = read a response (device drives 1 additional
byte on GPO1).
0xE0 = read a response (device drives 16 additional
pins. A transaction begins when the user drives SEN
low. Next, the user drives a 9-bit control word on SDIO,
which is captured by the device on rising edges of
SCLK. The control word consists of a 9-bit device
address (A7:A5 = 101b), a read/write bit (read = 1, write
= 0), and a 5-bit register address (A4:A0).
For write operations, the control word is followed by a
16-bit data word, which is captured by the device on
rising edges of SCLK.
For read operations, the control word is followed by a
delay of one-half SCLK cycle for bus turn-around. Next,
the Si4736/37/38/39 will drive the 16-bit read data word
serially on SDIO, changing the state of SDIO on each
rising edge of SCLK.
A transaction ends when the user sets SEN high, then
pulses SCLK high and low one final time. SCLK may
either stop or continue to toggle while SEN is high.
In 3-wire mode, commands are sent by first writing each
argument to register(s) 0xA1–0xA3, then writing the
command word to register 0xA0. A response is
retrieved by reading registers 0xA8–0xAF.
For details on timing specifications and diagrams, refer
to Table 6, “3-Wire Control Interface Characteristics,” on
page 9; Figure 4, “3-Wire Control Interface Write Timing
Parameters,” on page 9, and Figure 5, “3-Wire Control
Interface Read Timing Parameters,” on page 9.
bytes on GPO1).
For write operations, the system controller must drive
exactly 8 data bytes (a command and seven arguments)
on SDIO after the control byte. The data is captured by
the device on the rising edge of SCLK.
For read operations, the controller must read exactly 1
byte (STATUS) after the control byte or exactly 16 data
bytes (STATUS and RESP1–RESP15) after the control
byte. The device changes the state of SDIO (or GPO1, if
specified) on the falling edge of SCLK. Data must be
captured by the system controller on the rising edge of
SCLK.
Keep SEN low until all bytes have transferred. A
transaction may be aborted at any time by setting SEN
high and toggling SCLK high and then low. Commands
will be ignored by the device if the transaction is
aborted.
For details on timing specifications and diagrams, refer
to Figure 6 and Figure 7 on page 10.
5.16. GPO Outputs
The Si4736/37/38/39 provides three general-purpose
output pins. The GPO pins can be configured to output
a constant low, constant high, or high-impedance. The
GPO pins can be reconfigured as specialized functions.
GPO2/INT can be configured to provide interrupts and
GPO3 can be configured to provide external crystal
support or as DCLK in digital audio output mode.
Rev. 1.0
25
相关PDF资料
PDF描述
SI4739-C40-GUR IC RX FM/WB RAD RDS/RBDS 24SSOP
IXTP90N075T2 MOSFET N-CH 75V 90A TO-220
SI4738-C40-GMR IC RX FM/WB RADIO 20UQFN
SI4738-C40-GUR IC RX FM/WB RADIO 24SSOP
SI4330-B1-FMR IC RX ISM 240-960MHZ 20VQFN
相关代理商/技术参数
参数描述
Si4739-C40-GU 功能描述:射频接收器 BC FM/WB Radio Receiver w/RDS/RBDS RoHS:否 制造商:Skyworks Solutions, Inc. 类型:GPS Receiver 封装 / 箱体:QFN-24 工作频率:4.092 MHz 工作电源电压:3.3 V 封装:Reel
SI4739-C40-GUR 功能描述:射频接收器 Broadcast FM/WB Recvr w/RDS/RBDS RoHS:否 制造商:Skyworks Solutions, Inc. 类型:GPS Receiver 封装 / 箱体:QFN-24 工作频率:4.092 MHz 工作电源电压:3.3 V 封装:Reel
SI4740 制造商:SILABS 制造商全称:SILABS 功能描述:Automotive AM/FM Radio Receiver
SI4740-C10-GM 功能描述:IC TUNER AM/FM CAR RADIO 24QFN RoHS:是 类别:RF/IF 和 RFID >> RF 接收器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS 产品变化通告:Product Discontinuation 09/Jan/2012 标准包装:50 系列:* 频率:850MHz ~ 2.175GHz 灵敏度:- 数据传输率 - 最大:- 调制或协议:- 应用:* 电流 - 接收:* 数据接口:PCB,表面贴装 存储容量:- 天线连接器:PCB,表面贴装 特点:- 电源电压:4.75 V ~ 5.25 V 工作温度:0°C ~ 85°C 封装/外壳:40-WFQFN 裸露焊盘 供应商设备封装:40-TQFN-EP(6x6) 包装:托盘
SI4740-C10-GMR 制造商:Silicon Laboratories Inc 功能描述:SI4740-C10-GM AM/FM AUTOMOTIVE RADIO RX - Tape and Reel 制造商:Silicon Laboratories Inc 功能描述:IC TUNER AM/FM CAR RADIO 24QFN