参数资料
型号: TC500COE
元件分类: 模拟信号调理
英文描述: SPECIALTY ANALOG CIRCUIT, PDSO16
封装: 0.300 INCH, PLASTIC, MS-013, SOIC-16
文件页数: 9/38页
文件大小: 562K
代理商: TC500COE
2008 Microchip Technology Inc.
DS21428E-page 17
TC500/A/510/514
8.0
DESIGN CONSIDERATIONS
8.1
Noise
The threshold noise (NTH) is the algebraic sum of the
integrator and comparator noise and is typically 30 μV.
Figure 8-1 illustrates how the value of the reference
voltage can affect the final count. Such errors can be
reduced by increased integration times, in the same
way that 50/60 Hz noise is rejected. The signal-to-
noise ratio is related to the integration time (TINT) and
the integration time constant (RINT, CINT) as follows:
EQUATION 8-1:
8.2
System Timing
To obtain maximum performance from the TC5XX, the
overshoot at the end of the de-integration phase must
be minimized. Also, the integrator output zero phase
must be terminated as soon as the comparator output
returns high (see Figure 5-1).
Figure 5-1 shows the overall timing for a typical system
in which a TC5XX is interfaced to a microcontroller. The
microcontroller drives the A, B inputs with I/O lines and
monitors the comparator output (CMPTR) using an I/O
line or dedicated timer capture control pin. It may be
necessary to monitor the state of the CMPTR output in
addition to having it control a timer directly for the
Reference de-integration phase (this is further
explained below.)
The timing diagram in Figure 5-1 is not to scale, as the
timing in a real system depends on many system
parameters and component value selections. There
are four critical timing events (as shown in Figure 5-1):
sampling the input polarity, capturing the de-integration
time, minimizing overshoot and properly executing the
integrator output zero phase.
8.3
Auto-zero Phase
The length of this phase is usually set to be equal to the
input signal integration time. This decision is virtually
arbitrary since the magnitudes of the various system
errors are not known. Setting the auto-zero time equal
to the Input Integrate time should be more than
adequate to null out system errors. The system may
remain in this phase indefinitely (i.e., auto-zero is the
appropriate Idle state for a TC5XX device).
8.4
Input Signal Integrate Phase
The length of this phase is constant from one
conversion to the next and depends on system
parameters and component value selections. The
calculation of TINT is shown elsewhere in this data
sheet. At some point near the end of this phase, the
microcontroller should sample CMPTR to determine
the input signal polarity. This value is, in effect, the Sign
Bit for the overall conversion result. Optimally, CMPTR
should be sampled just before this phase is terminated
by changing AB from 10 to 11. The consideration here
is that, during the initial stage of input integration when
the integrator voltage is low, the comparator may be
affected by noise and its output unreliable. Once
integration is well underway, the comparator will be in a
defined state.
8.5
Reference De-integration
The length of this phase must be precisely measured
from the transition of AB from 10 to 11 to the falling-
edge of CMPTR. The comparator delay contributes
some error in timing this phase. The typical delay is
specified to be 2 μs. This should be considered in the
context of the length of a single count when
determining overall system performance and possible
single count errors. Additionally, overshoot will result in
charge accumulating on the integrator once its output
crosses zero. This charge must be nulled during the
integrator output zero phase.
FIGURE 8-1:
Noise Threshold.
S/N (dB)
20 log
V
IN
30
10
6
×
-----------------------
t
INT
R
INT
()
C
INT
()
---------------------------------------
=
Low VREF
Normal VREF
High VREF
S
NTH
S
NTH
30 V
S
NTH
Slope (S) =
NTH = Noise Threshold
VREF
RINT CINT
相关PDF资料
PDF描述
TC500CPE SPECIALTY ANALOG CIRCUIT, PDIP16
TC5092AF 8-CH 13-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP44
TC520ACOE SPECIALTY ANALOG CIRCUIT, PDSO16
TC6335AF SPECIALTY ANALOG CIRCUIT, PQFP100
TC6400IUD-20#TRPBF 1-CH 16-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQCC16
相关代理商/技术参数
参数描述
TC500COE713 功能描述:电信线路管理 IC 16 Bit Analog Proces RoHS:否 制造商:STMicroelectronics 产品:PHY 接口类型:UART 电源电压-最大:18 V 电源电压-最小:8 V 电源电流:30 mA 最大工作温度:+ 85 C 最小工作温度:- 40 C 安装风格:SMD/SMT 封装 / 箱体:VFQFPN-48 封装:Tray
TC500COG 制造商:MICROCHIP 制造商全称:Microchip Technology 功能描述:Precision Analog Front Ends with Dual Slope ADC
TC500COG713 制造商:MICROCHIP 制造商全称:Microchip Technology 功能描述:Precision Analog Front Ends with Dual Slope ADC
TC500COI 制造商:MICROCHIP 制造商全称:Microchip Technology 功能描述:Precision Analog Front Ends with Dual Slope ADC
TC500COI713 制造商:MICROCHIP 制造商全称:Microchip Technology 功能描述:Precision Analog Front Ends with Dual Slope ADC