参数资料
型号: TPS63061DSCT
厂商: Texas Instruments
文件页数: 20/32页
文件大小: 0K
描述: IC REG BUCK BST SYNC 5V 1A 10SON
标准包装: 1
类型: 降压(降压),升压(升压)
输出类型: 固定
输出数: 1
输出电压: 5V
输入电压: 2.5 V ~ 12 V
PWM 型: 电流模式
频率 - 开关: 2.4MHz
电流 - 输出: 1A
同步整流器:
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 10-WFDFN 裸露焊盘
包装: 标准包装
供应商设备封装: 10-SON 裸露焊盘(3x3)
其它名称: 296-30179-6

SLVSA92A – DECEMBER 2011 – REVISED FEBRUARY 2012
APPLICATION INFORMATION
DESIGN PROCEDURE
The TPS6306x series of buck-boost converter has internal loop compensation. Therefore, the external L-C filter
has to be selected to work with the internal compensation. When selecting the output filter a low limit for the
inductor value exists to avoid subharmonic oscillation which could be caused by a far too fast ramp up of the
amplified inductor current. For the TPS6306x series, the minimum inductor value should be kept at 1 μ H.
Selecting a larger output capacitor value is less critical because the corner frequency moves to lower
frequencies. To simplify this process, Table 2 outlines possible inductor and capacitor value combinations.
Table 2. Output Filter Selection (Average Inductance current up to 2A)
INDUCTOR VALUE [ μ H] (1)
1.0
1.5
44
OUTPUT CAPACITOR VALUE [ μ F] (2)
66
√ (3)
100
(1)
(2)
(3)
Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20%
and – 30%.
Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by
20% and – 50%.
Typical application. Other check mark indicates recommended filter combinations
Inductor Selection
For high efficiencies, the inductor should have a low dc resistance to minimize conduction losses. Especially at
high-switching frequencies the core material has a higher impact on efficiency. When using small chip inductors,
the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting
the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value,
the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger
inductor values cause a slower load transient response. To avoid saturation of the inductor, with the chosen
inductance value, the peak current for the inductor in steady state operation can be calculated. Equation 1 and
Equation 5 show how to calculate the peak current I PEAK . Only the equation which defines the switch current in
boost mode is reported because this is providing the highest value of current and represents the critical current
value for selecting the right inductor.
Iout Vin ′ D
I PEAK =
+
η ′ (1 - D) 2 ′ f ′ L
(5)
With,
D =Duty Cycle in Boost mode
f = Converter switching frequency (typical 2.4 MHz)
L = Selected inductor value
η = Estimated converter efficiency (use the number from the efficiency curves or 0.80 as an assumption)
Note: The calculation must be done for the minimum input voltage which is possible to have in boost mode
Consideration must be given to the load transients and error conditions that can cause higher inductor currents.
This must be taken into consideration when selecting an appropriate inductor. See Table 3 for typical inductors.
The size of the inductor can also affect the stability of the feedback loop. In particular the boost transfer function
exhibits a right half-plane zero, whose frequency is inverse proportional to the inductor value and the load
current. This means higher is the value of inductance and load current more possibilities has the right half plane
zero to be moved at lower frequency. This could degrade the phase margin of the feedback loop. It is
recommended to choose the inductor's value in order to have the frequency of the right half plane zero > 400kHz.
The frequency of the RHPZ can be calculated using Equation 6 .
With,
f RHPZ =
(1 - D) 2 ′ Vout
2 p ′ Iout ′ L
(6)
20
Copyright ? 2011 – 2012, Texas Instruments Incorporated
Product Folder Link(s): TPS63060 TPS63061
相关PDF资料
PDF描述
TPS65217CRSLR IC PMIC BATT PWR SYST 48VQFN
TPS6735IDG4 IC REG INV -5V 0.2A 8SOIC
TPS72301QDBVRQ1 IC REG LDO NEG ADJ .2A 8SOIC
TPS72325QDBVRQ1 IC REG LDO -2.5V .2A SOT23-5
TPS73533DRBT IC REG LDO 3.3V .5A 8-SON
相关代理商/技术参数
参数描述
TPS630701RNMR 功能描述:IC REG BCK BST 5V 2A SYNC 15VQFN 制造商:texas instruments 系列:- 包装:剪切带(CT) 零件状态:在售 功能:升压/降压 输出配置:正 拓扑:降压升压 输出类型:固定 输出数:1 电压 - 输入(最小值):2V 电压 - 输入(最大值):16V 电压 - 输出(最小值/固定):5V 电压 - 输出(最大值):- 电流 - 输出:2A 频率 - 开关:2.4MHz 同步整流器:是 工作温度:-40°C ~ 125°C (TJ) 安装类型:表面贴装 封装/外壳:15-PowerVFQFN 供应商器件封装:15-VQFN-HR(3x2.5) 标准包装:1
TPS630701RNMT 功能描述:Buck-Boost Switching Regulator IC Positive Fixed 5V 1 Output 2A 15-PowerVFQFN 制造商:texas instruments 系列:- 包装:剪切带(CT) 零件状态:在售 功能:升压/降压 输出配置:正 拓扑:降压-升压 输出类型:固定 输出数:1 电压 - 输入(最小值):2V 电压 - 输入(最大值):16V 电压 - 输出(最小值/固定):5V 电压 - 输出(最大值):- 电流 - 输出:2A 频率 - 开关:2.4MHz 同步整流器:是 工作温度:-40°C ~ 125°C (TJ) 安装类型:表面贴装 封装/外壳:15-PowerVFQFN 供应商器件封装:15-VQFN-HR(3x2.5) 标准包装:1
TPS63070EVM-693 功能描述:BUCK-BOOST CONVERTER EVAL MODULE 制造商:texas instruments 系列:- 零件状态:在售 主要用途:DC/DC,步升/步降 输出和类型:1,非隔离 电压 - 输出:5V 电流 - 输出:2A 电压 - 输入:2 V ~ 16 V 稳压器拓扑:降压-升压 频率 - 开关:2.4MHz 板类型:完全填充 所含物品:板 使用的 IC/零件:TPS63070 标准包装:1
TPS63070RNMR 功能描述:Buck-Boost Switching Regulator IC Positive Adjustable 2.5V 1 Output 3.6A (Switch) 15-PowerVFQFN 制造商:texas instruments 系列:- 包装:剪切带(CT) 零件状态:在售 功能:升压/降压 输出配置:正 拓扑:降压-升压 输出类型:可调式 输出数:1 电压 - 输入(最小值):2V 电压 - 输入(最大值):16V 电压 - 输出(最小值/固定):2.5V 电压 - 输出(最大值):9V 电流 - 输出:3.6A(开关) 频率 - 开关:2.4MHz 同步整流器:是 工作温度:-40°C ~ 125°C (TJ) 安装类型:表面贴装 封装/外壳:15-PowerVFQFN 供应商器件封装:15-VQFN-HR(3x2.5) 标准包装:1
TPS63070RNMT 功能描述:Buck-Boost Switching Regulator IC Positive Adjustable 2.5V 1 Output 2A 15-PowerVFQFN 制造商:texas instruments 系列:- 包装:剪切带(CT) 零件状态:在售 功能:升压/降压 输出配置:正 拓扑:降压-升压 输出类型:可调式 输出数:1 电压 - 输入(最小值):2V 电压 - 输入(最大值):16V 电压 - 输出(最小值/固定):2.5V 电压 - 输出(最大值):9V 电流 - 输出:2A 频率 - 开关:2.4MHz 同步整流器:是 工作温度:-40°C ~ 125°C (TJ) 安装类型:表面贴装 封装/外壳:15-PowerVFQFN 供应商器件封装:15-VQFN-HR(3x2.5) 标准包装:1