参数资料
型号: AD5324BRMZ
厂商: Analog Devices Inc
文件页数: 4/24页
文件大小: 0K
描述: IC DAC 12BIT QUAD VOUT 10-MSOP
产品培训模块: Data Converter Fundamentals
DAC Architectures
标准包装: 50
设置时间: 8µs
位数: 12
数据接口: DSP,MICROWIRE?,QSPI?,串行,SPI?
转换器数目: 4
电压电源: 单电源
工作温度: -40°C ~ 105°C
安装类型: 表面贴装
封装/外壳: 10-TFSOP,10-MSOP(0.118",3.00mm 宽)
供应商设备封装: 10-MSOP
包装: 管件
输出数目和类型: 4 电压,单极;4 电压,双极
采样率(每秒): 125k
产品目录页面: 782 (CN2011-ZH PDF)
AD5304/AD5314/AD5324
Data Sheet
Rev. H | Page 12 of 24
TERMINOLOGY
Relative Accuracy or Integral Nonlinearity (INL)
For the DAC, relative accuracy or integral nonlinearity (INL)
is a measure of the maximum deviation, in LSB, from a straight
line passing through the endpoints of the DAC transfer function.
Typical INL vs. code plots can be seen in Figure 5, Figure 6,
Differential Nonlinearity
Differential nonlinearity (DNL) is the difference between the
measured change and the ideal 1 LSB change between any two
adjacent codes. A specified differential nonlinearity of ±1 LSB
maximum ensures monotonicity. This DAC is guaranteed mono-
tonic by design. Typical DNL vs. code plots can be seen in Figure 8,
Offset Error
This is a measure of the offset error of the DAC and the output
amplifier. It is expressed as a percentage of the full-scale range.
Gain Error
This is a measure of the span error of the DAC. It is the deviation
in slope of the actual DAC transfer characteristic from the ideal
expressed as a percentage of the full-scale range.
Offset Error Drift
This is a measure of the change in offset error with changes in
temperature. It is expressed in (ppm of full-scale range)/°C.
Gain Error Drift
This is a measure of the change in gain error with changes in
temperature. It is expressed in (ppm of full-scale range)/°C.
Power Supply Rejection Ratio (PSRR)
This indicates how the output of the DAC is affected by changes
in the supply voltage. PSRR is the ratio of the change in VOUT to
a change in VDD for full-scale output of the DAC. It is measured
in decibels. VREF is held at 2 V and VDD is varied ±10%.
DC Crosstalk
This is the dc change in the output level of one DAC at midscale
in response to a full-scale code change (all 0s to all 1s and vice
versa) and output change of another DAC. It is expressed in
microvolts.
Reference Feedthrough
This is the ratio of the amplitude of the signal at the DAC output to
the reference input when the DAC output is not being updated.
It is expressed in decibels.
Major-Code Transition Glitch Energy
Major-code transition glitch energy is the energy of the impulse
injected into the analog output when the code in the DAC register
changes state. It is normally specified as the area of the glitch in
nV-s and is measured when the digital code is changed by 1 LSB
at the major carry transition (011 . . . 11 to 100 . . . 00 or 100 . . .
00 to 011 . . . 11).
Digital Feedthrough
Digital feedthrough is a measure of the impulse injected into the
analog output of the DAC from the digital input pins of the
device when the DAC output is not being written to (SYNC
held high). It is specified in nV-s and is measured with a worst-
case change on the digital input pins (for example, from all 0s
to all 1s or vice versa.)
Digital Crosstalk
This is the glitch impulse transferred to the output of one DAC
at midscale in response to a full-scale code change (all 0s to all
1s and vice versa) in the input register of another DAC. It is
expressed in nV-s.
DAC-to-DAC Crosstalk
This is the glitch impulse transferred to the output of one DAC
due to a digital code change and subsequent output change of
another DAC. This includes both digital and analog crosstalk.
It is measured by loading one of the DACs with a full-scale code
change (all 0s to all 1s and vice versa) with the LDAC bit set low
and monitoring the output of another DAC. The energy of the
glitch is expressed in nV-s.
Multiplying Bandwidth
The amplifiers within the DAC have a finite bandwidth. The
multiplying bandwidth is a measure of this. A sine wave on the
reference (with full-scale code loaded to the DAC) appears on
the output. The multiplying bandwidth is the frequency at which
the output amplitude falls to 3 dB below the input.
Total Harmonic Distortion (THD)
This is the difference between an ideal sine wave and its attenuated
version using the DAC. The sine wave is used as the reference for
the DAC and the THD is a measure of the harmonics present on
the DAC output. It is measured in decibels.
相关PDF资料
PDF描述
MS3106E32-64S CONN PLUG 54POS STRAIGHT W/SCKT
VE-B62-MV-F2 CONVERTER MOD DC/DC 15V 150W
VE-J4H-MZ-F2 CONVERTER MOD DC/DC 52V 25W
GTC01G-28-51S CONN RCPT 12POS INLINE W/SCKT
VE-J4H-MZ-F1 CONVERTER MOD DC/DC 52V 25W
相关代理商/技术参数
参数描述
AD5324BRMZ-REEL 功能描述:IC DAC 12BIT QUAD VOUT 10MSOP TR RoHS:是 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 标准包装:47 系列:- 设置时间:2µs 位数:14 数据接口:并联 转换器数目:1 电压电源:单电源 功率耗散(最大):55µW 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:28-SSOP(0.209",5.30mm 宽) 供应商设备封装:28-SSOP 包装:管件 输出数目和类型:1 电流,单极;1 电流,双极 采样率(每秒):*
AD5324BRMZ-REEL7 功能描述:IC DAC 12BIT QUAD VOUT 10MSOP TR RoHS:是 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 标准包装:47 系列:- 设置时间:2µs 位数:14 数据接口:并联 转换器数目:1 电压电源:单电源 功率耗散(最大):55µW 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:28-SSOP(0.209",5.30mm 宽) 供应商设备封装:28-SSOP 包装:管件 输出数目和类型:1 电流,单极;1 电流,双极 采样率(每秒):*
AD5324SRMZ-EP-RL7 功能描述:数模转换器- DAC IC 12-BIT QUAD 8uS RoHS:否 制造商:Analog Devices 转换器数量:4 DAC 输出端数量:4 转换速率: 分辨率:12 bit 接口类型:Serial (I2C) 稳定时间: 最大工作温度:+ 105 C 安装风格: 封装 / 箱体:TSSOP 封装:Reel
AD5325 制造商:AD 制造商全称:Analog Devices 功能描述:2.5 V to 5.5 V, 500 uA, Parallel Interface Quad Voltage-Output 8-/10-/12-Bit DACs
AD5325ARM 功能描述:IC DAC 12BIT 2WIRE I2C 10-MSOP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 标准包装:47 系列:- 设置时间:2µs 位数:14 数据接口:并联 转换器数目:1 电压电源:单电源 功率耗散(最大):55µW 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:28-SSOP(0.209",5.30mm 宽) 供应商设备封装:28-SSOP 包装:管件 输出数目和类型:1 电流,单极;1 电流,双极 采样率(每秒):*