参数资料
型号: AD5370BSTZ
厂商: Analog Devices Inc
文件页数: 11/29页
文件大小: 0K
描述: IC DAC 16BIT 40CH SERIAL 64-LQFP
产品培训模块: Data Converter Fundamentals
DAC Architectures
设计资源: 40 Channels of Programmable Output Span Using AD5371 (CN0149)
标准包装: 1
设置时间: 20µs
位数: 16
数据接口: DSP,MICROWIRE?,QSPI?,串行,SPI?
转换器数目: 40
电压电源: 双 ±
功率耗散(最大): 610mW
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 64-LQFP
供应商设备封装: 64-LQFP(10x10)
包装: 托盘
输出数目和类型: 40 电压,单极;40 电压,双极
AD5370
Rev. 0 | Page 18 of 28
Reference Selection Example
If
Nominal Output Range = 12 V (4 V to +8 V)
Zero-Scale Error = ±70 mV
Gain Error = ±3%
SIGGND = AGND = 0 V
Then
Gain Error = ±3%
=> Maximum Positive Gain Error = +3%
=> Output Range Including Gain Error = 12 + 0.03(12) =
12.36 V
Offset Error = ±70 mV
=> Maximum Offset Error Span = 2(70 mV) = 0.14 V
=> Output Range Including Gain Error and Offset Error =
12.36 V + 0.14 V = 12.5 V
VREF Calculation
Actual Output Range = 12.5 V, that is, 4.25 V to +8.25 V;
VREF = (8.25 V + 4.25 V)/4 = 3.125 V
If the equation yields an inconvenient reference level, the user
can adopt one of the following approaches:
Use a resistor divider to divide down a convenient, higher
reference level to the required level.
Select a convenient reference level above VREF, and modify
the gain and offset registers to downsize the reference digitally.
In this way, the user can use almost any convenient reference
level but may reduce the performance by overcompaction
of the transfer function.
Use a combination of these two approaches.
CALIBRATION
The user can perform a system calibration on the AD5370 to
reduce gain and offset errors to below 1 LSB. This is achieved
by calculating new values for the M and C registers and reprogram-
ming them.
Reducing Zero-Scale Error
Zero-scale error can be reduced as follows:
1.
Set the output to the lowest possible value.
2.
Measure the actual output voltage and compare it with the
required value. This gives the zero-scale error.
3.
Calculate the number of LSBs equivalent to the error and
add this from the default value of the C register. Note that
only negative zero-scale error can be reduced.
Reducing Full-scale Error
Full-scale error can be reduced as follows:
1.
Measure the zero-scale error.
2.
Set the output to the highest possible value.
3.
Measure the actual output voltage and compare it with the
required value. Add this error to the zero-scale error. This
is the span error, which includes the full-scale error.
4.
Calculate the number of LSBs equivalent to the full-scale
error and subtract it from the default value of the M register.
Note that only positive full-scale error can be reduced.
5.
The M and C registers should not be programmed until
both zero-scale and full-scale errors have been calculated.
AD5370 Calibration Example
This example assumes that a 4 V to +8 V output is required.
The DAC output is set to 4 V but measured at 4.03 V. This
gives a zero-scale error of 30 mV.
1.
1 LSB = 12 V/65,536 = 183.11 μV
2.
30 mV = 164 LSB
The full-scale error can now be calculated. The output is set to
+8 V and a value of +8.02 V is measured. The full-scale error is
+20 mV – (–30 mV) = +50 mV.
50 mV = 273 LSBs
The errors can now be removed.
1.
164 LSB should be added to the default C register value,
that is (32,768 + 164) = 32,932.
2.
273 LSB should be subtracted from the default M register
value; that is, (65,535 273) = 65,262.
3.
65,262 should be programmed to the M register and 32,932
should be programmed to the C register.
ADDITIONAL CALIBRATION
The techniques described in the previous section are usually
enough to reduce the zero-scale and full-scale errors in most
applications. However, there are limitations whereby the errors
may not be sufficiently removed. For example, the offset (C)
register can only be used to reduce the offset caused by the
negative zero-scale error. A positive offset cannot be reduced.
Likewise, if the maximum voltage is below the ideal value, that
is, a negative full-scale error, the gain (M) register cannot be
used to increase the gain to compensate for the error.
These limitations can be overcome by increasing the reference
value. With a 3 V reference, a 12 V span is achieved. The ideal
voltage range for the AD5370 is 4 V to +8 V. Using a 3.1 V
reference increases the range to 4.133 V to +8.2667 V. Clearly,
in this case, the offset and gain errors are insignificant, and the
M and C registers can be used to raise the negative voltage to
4 V and then reduce the maximum voltage to +8 V to give the
most accurate values possible.
相关PDF资料
PDF描述
AD5373BSTZ IC DAC 14BIT 32CH SER 64-LQFP
AD5378ABC IC DAC 14BIT 32CHAN 108CSPBGA
AD5379ABC IC DAC 14BIT 40CH 108-CSPBGA
AD5380BSTZ-3 IC DAC 14BIT 40CHAN 3V 100LQFP
AD5381BSTZ-5 IC DAC 12BIT 40CH 5V 100-LQFP
相关代理商/技术参数
参数描述
AD5370BSTZ-REEL 功能描述:IC DAC 16BIT 40CH SERIAL 64-LQFP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1,000 系列:- 设置时间:1µs 位数:8 数据接口:串行 转换器数目:8 电压电源:双 ± 功率耗散(最大):941mW 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:24-SOIC(0.295",7.50mm 宽) 供应商设备封装:24-SOIC W 包装:带卷 (TR) 输出数目和类型:8 电压,单极 采样率(每秒):*
AD5370BSTZ-U2 制造商:Analog Devices 功能描述:40-CH 16-BIT SERIAL BIPOLAR DAC I.C. - Bulk
AD5371 制造商:AD 制造商全称:Analog Devices 功能描述:40-Channel, 14-Bit Serial Input, Voltage-Output DAC
AD5371BBCZ 功能描述:IC DAC 14BIT 40CH SER 100-CSPBGA RoHS:是 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1,000 系列:- 设置时间:1µs 位数:8 数据接口:串行 转换器数目:8 电压电源:双 ± 功率耗散(最大):941mW 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:24-SOIC(0.295",7.50mm 宽) 供应商设备封装:24-SOIC W 包装:带卷 (TR) 输出数目和类型:8 电压,单极 采样率(每秒):*
AD5371BBCZ-REEL 功能描述:IC DAC 14BIT 40CH SER 100-CSPBGA RoHS:是 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1,000 系列:- 设置时间:1µs 位数:8 数据接口:串行 转换器数目:8 电压电源:双 ± 功率耗散(最大):941mW 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:24-SOIC(0.295",7.50mm 宽) 供应商设备封装:24-SOIC W 包装:带卷 (TR) 输出数目和类型:8 电压,单极 采样率(每秒):*