参数资料
型号: AD7264BCPZ
厂商: Analog Devices Inc
文件页数: 14/29页
文件大小: 0K
描述: IC ADC 14BIT 2CH 1MSPS 48LFCSP
标准包装: 1
位数: 14
采样率(每秒): 1M
数据接口: DSP,MICROWIRE?,QSPI?,串行,SPI?
转换器数目: 2
功率耗散(最大): 175mW
电压电源: 单电源
工作温度: -40°C ~ 105°C
安装类型: 表面贴装
封装/外壳: 48-VFQFN 裸露焊盘,CSP
供应商设备封装: 48-LFCSP-VQ(7x7)
包装: 托盘
输入数目和类型: *
产品目录页面: 777 (CN2011-ZH PDF)
AD7264
Data Sheet
Rev. B | Page 20 of 28
MODES OF OPERATION
The AD7264 allows the user to choose between two modes of
operation: pin driven mode and control register mode.
PIN DRIVEN MODE
Pin driven mode allows the user to select the gain of the PGA,
the power-down mode, internal or external reference, and to
initiate a calibration of the offset for both ADC A and ADC B.
These functions are implemented by setting the logic levels on
the gain pins (G3 to G0), the power-down pins (PD2 to PD0),
the REFSEL pin, and the CAL pin, respectively.
The logic state of the G3 to G0 pins determines which mode of
operation is selected. Pin driven mode is selected if at least one
of the gain pins is set to a logic high state. Alternatively, if all
four gain pins are connected to a logic low, the control register
mode of operation is selected.
GAIN SELECTION
The on-board PGA allows the user to select from 14 program-
mable gain stages: ×1, ×2, ×3, ×4, ×6, ×8, ×12, ×16, ×24, ×32,
×48, ×64, ×96, and ×128. The PGA accepts fully differential
analog signals and provides three key functions, which include
selecting gains for small amplitude input signals, driving the
ADCs switched capacitive load, and buffering the source from
the switching effects of the SAR ADCs. The AD7264 offers the
user great flexibility in user interface, offering gain selection via
the control register or by driving the gain pins to the desired
logic state. The AD7264 has four gain pins, G3, G2, G1 and G0,
as shown in Figure 3 and Figure 4. Each gain setting is selected
by setting up the appropriate logic state on each of the four gain
pins, as outlined in Table 6. If all four gain pins are connected to
a logic low level, the part is put in control register mode, and
the gain settings are selected via the control register.
Table 6. Gain Selection
G3
G2
G1
G0
Gain
0
Software control
via control register
0
1
0
1
0
2
0
1
3
0
1
0
4
0
1
0
1
6
0
1
0
8
0
1
12
1
0
16
1
0
1
24
1
0
1
0
32
1
0
1
48
1
0
64
1
0
1
96
1
0
128
POWER-DOWN MODES
The AD7264 offers the user several of power-down options to
enable individual device components to be powered down
independently. These options can be chosen to optimize power
dissipation for different application requirements. The power-
down modes can be selected by either programming the device
via the control register or by driving the PD pins to the
appropriate logic levels. By setting the PD pins to a logic low
level when in pin driven mode, all four comparators and both
ADCs can be powered down. The PD2 and PD0 pins must be
set to logic high and the PD1 pin set to logic low level to power
up all circuitry on the AD7264. The PD pin configurations for
the various power-down options are outlined in Table 7.
Table 7. Power-Down Modes
PD2
PD1
PD0
Comparator A,
Comparator B
Comparator C,
Comparator D
ADC A,
ADC B
0
Off
0
1
Off
On
0
1
0
Off
On
Off
0
1
On
Off
1
0
On
Off
1
0
1
On
Off
1 PD2 = PD1 = PD0 = 1; resets the AD7264 when in pin driven mode only.
The AVCC and VDRIVE supplies must continue to be supplied to
the AD7264 when the comparators are powered up but the
ADCs are powered down. External diodes can be used from the
CA_CBVCC and/or CC_CDVCC to both the AVCC and the VDRIVE
supplies to ensure that they retain a supply at all times.
The AD7264 can be reset in pin driven mode only by setting the
PD pins to a logic high state. When the device is reset, all the
registers are cleared and the four comparators and the two
ADCs are left powered down.
In the normal mode of operation with the ADCs and compara-
tors powered on, the CA_CBVCC/CC_CDVCC supplies and the
AVCC supply can be at different voltage levels, as indicated in
Table 1. When the comparators on the AD7264 are in power-
down mode and the CA_CBVCC/CC_CDVCC supplies are at a
potential 0.3 V greater than or less than the AVCC supply, the
supplies consume more current than would be the case if both
sets of supplies were at the same potential. This configuration
does not damage the AD7264 but results in additional current
flowing in any or all of the AD7264 supply pins. This is due to
ESD protection diodes within the device. In applications where
power consumption in power-down mode is critical, it is
recommended that the CA_CBVCC/CC_CDVCC supply and the
AVCCsupply be held at the same potential.
相关PDF资料
PDF描述
AD7265BSUZ-REEL7 IC ADC 12BIT 3CHAN 1MSPS 32TQFP
AD7266BSUZ IC ADC 12BIT 3CH 2MSPS 32-TQFP
AD7274BRM IC ADC 12BIT 3MSPS HS LP 8MSOP
AD7276BRM IC ADC 12BIT 3MSPS HS LP 8MSOP
AD7291BCPZ-RL7 IC ADC I2C/SRL 22.22K 20LFCSP
相关代理商/技术参数
参数描述
AD7264BCPZ-5 功能描述:IC ADC 14BIT 2CH 500KSPS 48LFCSP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:16 采样率(每秒):45k 数据接口:串行 转换器数目:2 功率耗散(最大):315mW 电压电源:模拟和数字 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:28-SOIC(0.295",7.50mm 宽) 供应商设备封装:28-SOIC W 包装:带卷 (TR) 输入数目和类型:2 个单端,单极
AD7264BCPZ-5-RL7 功能描述:IC ADC 14BIT 2CH 500KSPS 48LFCSP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:16 采样率(每秒):45k 数据接口:串行 转换器数目:2 功率耗散(最大):315mW 电压电源:模拟和数字 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:28-SOIC(0.295",7.50mm 宽) 供应商设备封装:28-SOIC W 包装:带卷 (TR) 输入数目和类型:2 个单端,单极
AD7264BCPZ-RL7 功能描述:IC ADC 14BIT 2CH 1MSPS 48LFCSP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:16 采样率(每秒):45k 数据接口:串行 转换器数目:2 功率耗散(最大):315mW 电压电源:模拟和数字 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:28-SOIC(0.295",7.50mm 宽) 供应商设备封装:28-SOIC W 包装:带卷 (TR) 输入数目和类型:2 个单端,单极
AD7264BSTZ 功能描述:IC ADC 14BIT 2CH 1MSPS 48LQFP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 其它有关文件:TSA1204 View All Specifications 标准包装:1 系列:- 位数:12 采样率(每秒):20M 数据接口:并联 转换器数目:2 功率耗散(最大):155mW 电压电源:模拟和数字 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-TQFP 供应商设备封装:48-TQFP(7x7) 包装:Digi-Reel® 输入数目和类型:4 个单端,单极;2 个差分,单极 产品目录页面:1156 (CN2011-ZH PDF) 其它名称:497-5435-6
AD7264BSTZ-5 功能描述:IC ADC 14BIT 2CH 500KSPS 48LQFP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:16 采样率(每秒):45k 数据接口:串行 转换器数目:2 功率耗散(最大):315mW 电压电源:模拟和数字 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:28-SOIC(0.295",7.50mm 宽) 供应商设备封装:28-SOIC W 包装:带卷 (TR) 输入数目和类型:2 个单端,单极