参数资料
型号: AD7730BRUZ
厂商: Analog Devices Inc
文件页数: 11/53页
文件大小: 0K
描述: IC ADC TRANSDUCER BRIDGE 24TSSOP
标准包装: 1
位数: 24
通道数: 1
功率(瓦特): 125mW
电压 - 电源,模拟: 4.75 V ~ 5.25 V
电压 - 电源,数字: 2.7 V ~ 5.25 V
封装/外壳: 24-TSSOP(0.173",4.40mm 宽)
供应商设备封装: 24-TSSOP
包装: 管件
产品目录页面: 778 (CN2011-ZH PDF)
配用: EVAL-AD7730LEBZ-ND - BOARD EVALUATION FOR AD7730
EVAL-AD7730EBZ-ND - BOARD EVAL FOR AD7730
AD7730/AD7730L
–19–
Table XV. SF Ranges
CHOP
SKIP
SF Range
Output Update Rate Range (Assuming 4.9152 MHz Clock)
0
2048 to 150
150 Hz to 2.048 kHz
1
0
2048 to 75
50 Hz to 1.365 kHz
0
1
2048 to 40
150 Hz to 7.6 kHz
1
2048 to 20
50 Hz to 5.12 kHz
Bit
Location
Mnemonic
Description
FR11–FR10
ZERO
A zero must be written to these bits to ensure correct operation of the AD7730.
FR9
SKIP
FIR Filter Skip Bit. With a 0 in this bit, the AD7730 performs two stages of filtering before
shipping a result out of the filter. The first is a sinc3 filter followed by a 22-tap FIR filter. With a
1 in this bit, the FIR filter on the part is bypassed and the output of the sinc3 is fed directly
as the output result of the AD7730’s filter (see Filter Architecture for more details on the filter
implementation).
FR8
FAST
FASTStep Mode Enable Bit. A 1 in this bit enables the FASTStep mode on the AD7730. In
this mode, if a step change on the input is detected, the FIR calculation portion of the filter is
suspended and replaced by a simple moving average on the output of the sinc3 filter. Initially,
two outputs from the sinc3 filter are used to calculate an AD7730 output. The number of sinc3
outputs used to calculate the moving average output is increased (from 2 to 4 to 8 to 16) until
the
STDY bit goes low. When the FIR filter has fully settled after a step, the STDY bit will
become active and the FIR filter is switched back into the processing loop (see Filter Architec-
ture section for more details on the FASTStep mode).
FR7–FR6
ZERO
A zero must be written to these bits to ensure correct operation of the AD7730.
FR5
AC
AC Excitation Bit. If the signal source to the AD7730 is ac-excited, a 1 must be placed in this
bit. For dc-excited inputs, this bit must be 0. The ac bit has no effect if CHP is 0. With the ac
bit at 1, the AD7730 assumes that the voltage at the AIN(+)/AIN(–) and REF IN(+)/REF IN(–)
input terminals are reversed on alternate input sampling cycles (i.e. chopped). Note that when
the AD7730 is performing internal zero-scale or full-scale calibrations, the ac bit is treated as a
0, i.e., the device performs these self-calibrations with dc excitation.
FR4
CHP
Chop Enable Bit. This bit determines if the chopping mode on the part is enabled. A 1 in this
bit location enables chopping on the part. When the chop mode is enabled, the part is effectively
chopped at its input and output to remove all offset and offset drift errors on the part. If offset
performance with time and temperature are important parameters in the design, it is recom-
mended that the user enable chopping on the part. If the input signal is dc-excited, the user has
the option of operating the part in either chop or nonchop mode. If the input signal is ac-excited,
both the ac bit and the CHP bit must be set to 1. The chop rate on the ACX and
ACX signals is
one half of the programmed output rate of the part and thus the chopping frequency varies with
the programmed output rate.
FR3–FR0
DL3–DL0
Delay Selection Bits. These four bits program the delay (in modulator cycles) to be inserted after
each chop edge when the CHP bit is 1. One modulator cycle is MCLK IN/16 and is 3.25
μs at
MCLK IN = 4.9152 MHz. A delay should only be required when in ac mode. Its purpose is to
cater for external delays between the switching signals (ACX and
ACX) and when the analog
inputs are actually switched and settled. During the specified number of cycles (between 0 and
15), the modulator is held in reset and the filter does not accept any inputs. If CHP = 1, the
output rate is (MCLK IN/ 16
× (DL + 3 × SF) where DL is the value loaded to bits DL0–DL3.
The chop rate is always one half of the output rate. This chop period takes into account the
programmed delay and the fact that the sinc3 filter must settle every chop cycle. With CHP = 0,
the output rate is 1/SF.
REV. B
相关PDF资料
PDF描述
AD7730BRZ IC ADC BRIDGE TRANSDUCER 24-SOIC
VE-J5F-MW-F2 CONVERTER MOD DC/DC 72V 100W
AD7730LBRZ IC ADC TRANSDUCER BRIDGE 24SOIC
AD73311ARZ IC PROCESSOR FRONT END LP 20SOIC
VE-J5F-MW-F1 CONVERTER MOD DC/DC 72V 100W
相关代理商/技术参数
参数描述
AD7730BRUZ-REEL 功能描述:IC ADC BRIDGE TRANSDUCER 24TSSOP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模拟前端 (AFE) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 位数:- 通道数:2 功率(瓦特):- 电压 - 电源,模拟:3 V ~ 3.6 V 电压 - 电源,数字:3 V ~ 3.6 V 封装/外壳:32-VFQFN 裸露焊盘 供应商设备封装:32-QFN(5x5) 包装:带卷 (TR)
AD7730BRUZ-REEL7 功能描述:IC ADC BRIDGE TRANSDUCER 24TSSOP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模拟前端 (AFE) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 位数:- 通道数:2 功率(瓦特):- 电压 - 电源,模拟:3 V ~ 3.6 V 电压 - 电源,数字:3 V ~ 3.6 V 封装/外壳:32-VFQFN 裸露焊盘 供应商设备封装:32-QFN(5x5) 包装:带卷 (TR)
AD7730BRZ 功能描述:IC ADC BRIDGE TRANSDUCER 24-SOIC RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模拟前端 (AFE) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 位数:- 通道数:2 功率(瓦特):- 电压 - 电源,模拟:3 V ~ 3.6 V 电压 - 电源,数字:3 V ~ 3.6 V 封装/外壳:32-VFQFN 裸露焊盘 供应商设备封装:32-QFN(5x5) 包装:带卷 (TR)
AD7730BRZ 制造商:Analog Devices 功能描述:IC, ADC, 24BIT, 1.2KSPS, SOIC-24
AD7730BRZ-REEL 功能描述:IC ADC BRDGE TRANSDCR 24SOIC TR RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模拟前端 (AFE) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 位数:- 通道数:2 功率(瓦特):- 电压 - 电源,模拟:3 V ~ 3.6 V 电压 - 电源,数字:3 V ~ 3.6 V 封装/外壳:32-VFQFN 裸露焊盘 供应商设备封装:32-QFN(5x5) 包装:带卷 (TR)