参数资料
型号: ADUM3301ARWZ
厂商: Analog Devices Inc
文件页数: 18/20页
文件大小: 0K
描述: IC DIGITAL ISOLATOR 3CH 16-SOIC
其它图纸: ADUMx301 Series Diagram
标准包装: 47
系列: iCoupler®
输入 - 1 侧/2 侧: 2/1
通道数: 3
电源电压: 2.7 V ~ 5.5 V
电压 - 隔离: 2500Vrms
数据速率: 1Mbps
传输延迟: 65ns
输出类型: 逻辑
封装/外壳: 16-SOIC(0.295",7.50mm 宽)
供应商设备封装: 16-SOIC W
包装: 管件
工作温度: -40°C ~ 105°C
产品目录页面: 2766 (CN2011-ZH PDF)
ADuM3300/ADuM3301
The pulses at the transformer output have an amplitude greater
than 1.0 V. The decoder has a sensing threshold at about 0.5 V, thus
establishing a 0.5 V margin in which induced voltages can be
tolerated. The voltage induced across the receiving coil is given by
V = ( ?d β /dt ) ∑ π r n2 ; n = 1, 2, … , N
where:
β is magnetic flux density (gauss).
r n is the radius of the n th turn in the receiving coil (cm).
N is the number of turns in the receiving coil.
Given the geometry of the receiving coil in the ADuM330x and
1000
100
10
1
0.1
DISTANCE = 100mm
DISTANCE = 5mm
Data Sheet
DISTANCE = 1m
an imposed requirement that the induced voltage is at most
50% of the 0.5 V margin at the decoder, a maximum allowable
magnetic field is calculated as shown in Figure 16.
100
0.01
1k
10k 100k 1M 10M
MAGNETIC FIELD FREQUENCY (Hz)
Figure 17. Maximum Allowable Current
for Various Current-to- ADuM330x Spacings
100M
Note that at combinations of strong magnetic field and high
10
1
0.1
0.01
frequency, any loops formed by printed circuit board traces
could induce error voltages sufficiently large enough to trigger
the thresholds of succeeding circuitry. Care should be taken in
the layout of such traces to avoid this possibility.
POWER CONSUMPTION
The supply current at a given channel of the ADuM330x
isolator is a function of the supply voltage, the channel’s data
rate, and the channel’s output load.
0.001
1k
10k 100k 1M 10M
MAGNETIC FIELD FREQUENCY (Hz)
100M
For each input channel, the supply current is given by
I DDI = I DDI ( Q ) f ≤ 0.5 f r
Figure 16. Maximum Allowable External Magnetic Flux Density
I DDI = I DDI (D) × (2 f ? f r ) + I DDI ( Q )
f > 0.5 f r
I DDO = ( I DDO ( D ) + (0.5 × 10 ) × C L × V DDO ) × (2 f ? f r ) + I DDO ( Q )
For example, at a magnetic field frequency of 1 MHz, the
maximum allowable magnetic field of 0.2 kgauss induces a
voltage of 0.25 V at the receiving coil. This is about 50% of the
sensing threshold and does not cause a faulty output transition.
Similarly, if such an event were to occur during a transmitted
pulse (and was of the worst-case polarity), it would reduce the
received pulse from >1.0 V to 0.75 V—still well above the 0.5 V
sensing threshold of the decoder.
The preceding magnetic flux density values correspond to
specific current magnitudes at given distances from the
ADuM330x transformers. Figure 17 expresses these allowable
current magnitudes as a function of frequency for selected
distances. The ADuM330x is extremely immune and can be
affected only by extremely large currents operated at high
frequency very close to the component (see Figure 17). For the
1 MHz example noted, a 0.5 kA current would have to be placed
5 mm away from the ADuM330x to affect the component’s
operation.
For each output channel, the supply current is given by
I DDO = I DDO ( Q ) f ≤ 0.5 f r
?3
f > 0.5 f r
where:
I DDI (D) , I DDO (D) are the input and output dynamic supply currents
per channel (mA/Mbps).
C L is the output load capacitance (pF).
V DDO is the output supply voltage (V).
f is the input logic signal frequency (MHz); it is half of the input
data rate expressed in units of Mbps.
f r is the input stage refresh rate (Mbps).
I DDI (Q) , I DDO (Q) are the specified input and output quiescent
supply currents (mA).
To calculate the total I DD1 and I DD2 supply current, the supply
currents for each input and output channel corresponding to
V DD1 and V DD2 are calculated and totaled. Figure 6 provides per-
channel input supply current as a function of data rate. Figure 7
and Figure 8 provide per-channel output supply current as a
function of data rate for an unloaded output condition and for a
15 pF output condition, respectively. Figure 9 through Figure 12
provide total V DD1 and V DD2 supply current as a function of data
rate for ADuM3300 / ADuM3301 channel configurations.
Rev. C | Page 18 of 20
相关PDF资料
PDF描述
3-1879452-5 RES 680 OHM 750W 5% WW LUG
3-1879452-4 RES 560 OHM 750W 5% WW LUG
AWP10-8541-T-R CONN SOCKET IDC 10POS W/STR TIN
ADUM1411ARWZ IC ISOLATOR DGTL QUAD 16-SOIC
AWP34-7540-T-R CONN SOCKET IDC 34POS W/KEY TIN
相关代理商/技术参数
参数描述
ADUM3301ARWZ-RL 功能描述:IC DIGITAL ISOLATOR 3CH 16-SOIC RoHS:是 类别:隔离器 >> 数字隔离器 系列:iCoupler® 产品培训模块:IsoLoop® Isolator 标准包装:50 系列:IsoLoop® 输入 - 1 侧/2 侧:5/0 通道数:5 电源电压:3 V ~ 5.5 V 电压 - 隔离:2500Vrms 数据速率:110Mbps 传输延迟:12ns 输出类型:CMOS 封装/外壳:16-SOIC(0.154",3.90mm 宽) 供应商设备封装:16-SOIC N 包装:管件 工作温度:-40°C ~ 85°C 其它名称:390-1053-5
ADUM3301BRWZ 功能描述:IC DIGITAL ISOLATOR 3CH 16-SOIC RoHS:是 类别:隔离器 >> 数字隔离器 系列:iCoupler® 标准包装:66 系列:iCoupler® 输入 - 1 侧/2 侧:2/2 通道数:4 电源电压:3.3V,5V 电压 - 隔离:2500Vrms 数据速率:25Mbps 传输延迟:60ns 输出类型:逻辑 封装/外壳:20-SSOP(0.209",5.30mm 宽) 供应商设备封装:20-SSOP 包装:管件 工作温度:-40°C ~ 105°C
ADUM3301BRWZ-RL 功能描述:IC DIGITAL ISOLATOR 3CH 16-SOIC RoHS:是 类别:隔离器 >> 数字隔离器 系列:iCoupler® 产品培训模块:IsoLoop® Isolator 标准包装:50 系列:IsoLoop® 输入 - 1 侧/2 侧:5/0 通道数:5 电源电压:3 V ~ 5.5 V 电压 - 隔离:2500Vrms 数据速率:110Mbps 传输延迟:12ns 输出类型:CMOS 封装/外壳:16-SOIC(0.154",3.90mm 宽) 供应商设备封装:16-SOIC N 包装:管件 工作温度:-40°C ~ 85°C 其它名称:390-1053-5
ADUM3301CRWZ 功能描述:IC DIGITAL ISOLATOR 3CH 16-SOIC RoHS:是 类别:隔离器 >> 数字隔离器 系列:iCoupler® 标准包装:66 系列:iCoupler® 输入 - 1 侧/2 侧:2/2 通道数:4 电源电压:3.3V,5V 电压 - 隔离:2500Vrms 数据速率:25Mbps 传输延迟:60ns 输出类型:逻辑 封装/外壳:20-SSOP(0.209",5.30mm 宽) 供应商设备封装:20-SSOP 包装:管件 工作温度:-40°C ~ 105°C
ADUM3301CRWZ-RL 功能描述:IC DIGITAL ISOLATOR 3CH 16-SOIC RoHS:是 类别:隔离器 >> 数字隔离器 系列:iCoupler® 产品培训模块:IsoLoop® Isolator 标准包装:50 系列:IsoLoop® 输入 - 1 侧/2 侧:5/0 通道数:5 电源电压:3 V ~ 5.5 V 电压 - 隔离:2500Vrms 数据速率:110Mbps 传输延迟:12ns 输出类型:CMOS 封装/外壳:16-SOIC(0.154",3.90mm 宽) 供应商设备封装:16-SOIC N 包装:管件 工作温度:-40°C ~ 85°C 其它名称:390-1053-5