参数资料
型号: EVAL-AD5760SDZ
厂商: Analog Devices Inc
文件页数: 10/28页
文件大小: 0K
描述: BOARD EVAL FOR AD5760SDZ
标准包装: 1
系列: *
AD5760
Data Sheet
Rev. D | Page 18 of 28
TERMINOLOGY
Relative Accuracy
Relative accuracy, or integral nonlinearity (INL), is a measure of
the maximum deviation, in LSB, from a straight line passing
through the endpoints of the DAC transfer function. A typical
INL error vs. code plot is shown in Figure 5.
Differential Nonlinearity (DNL)
Differential nonlinearity is the difference between the measured
change and the ideal 1 LSB change between any two adjacent
codes. A specified differential nonlinearity of ±1 LSB maximum
ensures monotonicity. This DAC is guaranteed monotonic. A
typical DNL error vs. code plot is shown in Figure 9.
Linearity Error Long-Term Stability
Linearity error long-term stability is a measure of the stability of
the linearity of the DAC over a long period of time. It is specified
in LSB for a time period of 500 hours and 1000 hours at an
elevated ambient temperature.
Zero-Scale Error
Zero-scale error is a measure of the output error when zero-scale
code (0x00000) is loaded to the DAC register. Ideally, the output
voltage should be VREFN. Zero-scale error is expressed in LSBs.
Zero-Scale Error Temperature Coefficient
Zero-scale error temperature coefficient is a measure of the
change in zero-scale error with a change in temperature. It is
expressed in ppm FSR/°C.
Full-Scale Error
Full-scale error is a measure of the output error when full-scale
code (0x0FFFF) is loaded to the DAC register. Ideally, the
output voltage should be VREFP 1 LSB. Full-scale error is
expressed in LSBs.
Full-Scale Error Temperature Coefficient
Full-scale error temperature coefficient is a measure of the
change in full-scale error with a change in temperature. It is
expressed in ppm FSR/°C.
Gain Error
Gain error is a measure of the span error of the DAC. It is the
deviation in slope of the DAC transfer characteristic from the
ideal, expressed in ppm of the full-scale range.
Gain Error Temperature Coefficient
Gain error temperature coefficient is a measure of the change in
gain error with a change in temperature. It is expressed in ppm
FSR/°C.
Midscale Error
Midscale error is a measure of the output error when midscale
code (0x08000) is loaded to the DAC register. Ideally, the output
voltage should be (VREFP – VREFN)/2 +VREFN. Midscale error is
expressed in LSBs.
Output Voltage Settling Time
Output voltage settling time is the amount of time it takes for
the output voltage to settle to a specified level for a specified
change in voltage. For fast settling applications, a high speed
buffer amplifier is required to buffer the load from the 3.4 k
output impedance of the AD5760, in which case, it is the
amplifier that determines the settling time.
Digital-to-Analog Glitch Impulse
Digital-to-analog glitch impulse is the impulse injected into the
analog output when the input code in the DAC register changes
state. It is specified as the area of the glitch in nV-sec and is
measured when the digital input code is changed by 1 LSB at
the major carry transition (see Figure 48).
Output Enabled Glitch Impulse
Output enabled glitch impulse is the impulse injected into the
analog output when the clamp to ground on the DAC output is
removed. It is specified as the area of the glitch in nV-sec (see
Digital Feedthrough
Digital feedthrough is a measure of the impulse injected into
the analog output of the DAC from the digital inputs of the
DAC but is measured when the DAC output is not updated. It is
specified in nV-sec and measured with a full-scale code change
on the data bus, that is, from all 0s to all 1s, and vice versa.
Total Harmonic Distortion (THD)
Total harmonic distortion is the ratio of the rms sum of the
harmonics of the DAC output to the fundamental value. Only
the second to fifth harmonics are included.
DC Power Supply Rejection Ratio.
DC power supply rejection ratio is a measure of the rejection of
the output voltage to dc changes in the power supplies applied
to the DAC. It is measured for a given dc change in power
supply voltage and is expressed in V/V.
AC Power Supply Rejection Ratio (AC PSRR)
AC power supply rejection ratio is a measure of the rejection of
the output voltage to ac changes in the power supplies applied
to the DAC. It is measured for a given amplitude and frequency
change in power supply voltage and is expressed in decibels.
相关PDF资料
PDF描述
HKQ0603S4N7C-T INDUCTOR HI FREQ 4.7NH 0201
LGU2D471MELZ CAP ALUM 470UF 200V 20% SNAP
SEK331M100ST CAP ALUM 330UF 100V 20% RADIAL
MC56F8006DEMO DEMO BOARD FOR MC56F8006
380LX332M050J012 CAP ALUM 3300UF 50V 20% SNAP
相关代理商/技术参数
参数描述
EVAL-AD5764EB 制造商:Analog Devices 功能描述:EVALUATION BOARD FOR QUAD, 16-BIT, HIGH ACCURACY, SERIAL INPUT, BIPOLAR VOLTAGE OUTPUT DAC 制造商:Analog Devices 功能描述:EVALUATION CONTROL BOARD I.C. - Bulk
EVAL-AD5764EBZ 功能描述:BOARD EVAL FOR AD5764 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581
EVAL-AD5764REBZ 功能描述:EVAL BOARD FOR AD5764 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581
EVAL-AD5765EBZ 功能描述:BOARD EVAL FOR AD5765 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:* 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581
EVAL-AD5780SDZ 功能描述:BOARD EVALUATION FOR AD5780 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581