参数资料
型号: HIP6018BCBZ-T
厂商: Intersil
文件页数: 10/15页
文件大小: 384K
描述: IC REG TRPL BCK/LINEAR 24-SOIC
标准包装: 1,000
拓扑: 降压(降压)同步(1),线性(LDO)(2)
功能: 任何功能
输出数: 3
频率 - 开关: 215kHz
电压/电流 - 输出 1: 控制器
电压/电流 - 输出 2: 2.5V,-
电压/电流 - 输出 3: 控制器
带 LED 驱动器:
带监控器:
带序列发生器:
电源电压: 3.3 V ~ 12 V
工作温度: 0°C ~ 70°C
安装类型: *
封装/外壳: 24-SOIC(0.295",7.50mm 宽)
供应商设备封装: *
包装: 带卷 (TR)
10
Application Guidelines
Soft-Start Interval
Initially, the soft-start function clamps the error amplifiers output
of the PWM converter. After the output voltage increases to
approximately 80% of the set value, the reference input of the
error amplifier is clamped to a voltage proportional to the SS pin
voltage. Both linear outputs follow a similar start-up sequence.
The resulting output voltage sequence is shown in Figure 6.
The soft-start function controls the output voltage rate of rise
to limit the current surge at start-up. The soft-start interval is
programmed by the soft-start capacitor, C
SS
. Programming
a faster soft-start interval increases the peak surge current.
The peak surge current occurs during the initial output
voltage rise to 80% of the set value.
Shutdown
The PWM output does not switch until the soft-start voltage
(V
SS
) exceeds the oscillators valley voltage. Additionally,
the reference on each linears amplifier is clamped to the
soft-start voltage. Holding the SS pin low with an open drain
or collector signal turns off all three regulators.
The VID codes resulting in an INHIBIT as shown in Table 1
also shuts down the IC.
Layout Considerations
MOSFETs switch very fast and efficiently. The speed with which
the current transitions from one device to another causes voltage
spikes across the interconnecting impedances and parasitic
circuit elements. The voltage spikes can degrade efficiency,
radiate noise into the circuit, and lead to device over-voltage
stress. Careful component layout and printed circuit design
minimizes the voltage spikes in the converter. Consider, as an
example, the turn-off transition of the upper PWM MOSFET.
Prior to turn-off, the upper MOSFET was carrying the full load
current. During the turn-off, current stops flowing in the upper
MOSFET and is picked up by the lower MOSFET (and/or parallel
Schottky diode). Any inductance in the switched current path
generates a large voltage spike during the switching interval.
Careful component selection, tight layout of the critical
components, and short, wide circuit traces minimize the
magnitude of voltage spikes. Contact Intersil for evaluation board
drawings of the component placement and printed circuit board.
There are two sets of critical components in a DC-DC converter
using a HIP6018B controller. The power components are the
most critical because they switch large amounts of energy. The
critical small signal components connect to sensitive nodes or
supply critical by-passing current.
The power components should be placed first. Locate the
input capacitors close to the power switches. Minimize the
length of the connections between the input capacitors and
the power switches. Locate the output inductor and output
capacitors between the MOSFETs and the load. Locate the
PWM controller close to the MOSFETs.
The critical small signal components include the by-pass
capacitor for VCC and the soft-start capacitor, C
SS
. Locate
these components close to their connecting pins on the
control IC. Minimize any leakage current paths from SS
node because the internal current source is only 11糀.
A multi-layer printed circuit board is recommended. Figure 10
shows the connections of the critical components in the
converter. Note that capacitors C
IN
 and C
OUT
 could each
represent numerous physical capacitors. Dedicate one solid
layer for a ground plane and make all critical component
ground connections with vias to this layer. Dedicate another
solid layer as a power plane and break this plane into
smaller islands of common voltage levels. The power plane
should support the input power and output power nodes.
Use copper filled polygons on the top and bottom circuit
layers for the phase nodes. Use the remaining printed circuit
layers for small signal wiring. The wiring traces from the
control IC to the MOSFET gate and source should be sized
to carry 1A currents. The traces for OUT2 need only be
sized for 0.2A. Locate C
OUT2
 close to the HIP6018B IC.
PWM Controller Feedback Compensation
Both PWM controllers use voltage-mode control for output
regulation. This section highlights the design consideration
for a voltage-mode controller. Apply the methods and
considerations to both PWM controllers.
Figure 11 highlights the voltage-mode control loop for a
synchronous-rectified buck converter. The output voltage is
regulated to the reference voltage level. The reference
voltage level is the DAC output voltage for the PWM
controller. The error amplifier output (V
E/A
) is compared with
the oscillator (OSC) triangular wave to provide a pulse-width
modulated wave with an amplitude of V
IN
 at the PHASE node.
The PWM wave is smoothed by the output filter (L
O
 and C
O
).
V
OUT1
Q1
Q2
C
SS
+12V
C
VCC
VIA CONNECTION TO GROUND PLANE
ISLAND ON POWER PLANE LAYER
ISLAND ON CIRCUIT PLANE LAYER
L
OUT1
C
OUT1
CR1
C
IN
V
OUT3
+5V
IN
FIGURE 10. PRINTED CIRCUIT BOARD POWER PLANES AND
ISLANDS
KEY
HIP6018B
SS PGND
LGATE1
UGATE1
PHASE1
GATE3
VCC  GND
VIN2
+3.3V
IN
Q3
C
OUT2
V
OUT2
VOUT2
OCSET1
R
OCSET1
C
OCSET1
HIP6018B
相关PDF资料
PDF描述
HIP6021CB-T IC REG QD BCK/LINEAR 28-SOIC
HIP6521CB-T IC REG QD BCK/LINEAR SYNC 16SOIC
HMC920LP5E IC CTRLR ACTIVE BIAS 32QFN
IDTTSE2002B3CNRG IC TEMP SENS EEPROM DFN-8
IPM6220ACAZ-T IC REG 5OUT BUCK/LDO SYNC 24SSOP
相关代理商/技术参数
参数描述
HIP6018CB 制造商:Rochester Electronics LLC 功能描述:- Bulk 制造商:Harris Corporation 功能描述:
HIP6018CB-T 制造商:Rochester Electronics LLC 功能描述:- Tape and Reel
HIP6018EVAL1 制造商:INTERSIL 制造商全称:Intersil Corporation 功能描述:Advanced PWM and Dual Linear Power Control
HIP6019 制造商:IRF 制造商全称:International Rectifier 功能描述:5-BIT PROGRAMMABLE SYNCHRONOUS BUCK, NON-SYNCHRONOUS,ADJUSTABLE LDO AND 200mA ON-BOARD LDO
HIP6019B 制造商:INTERSIL 制造商全称:Intersil Corporation 功能描述:Advanced Dual PWM and Dual Linear Power Control