参数资料
型号: ISL6440IAZ-TK
厂商: Intersil
文件页数: 10/15页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 24-QSOP
产品培训模块: Solutions for Industrial Control Applications
标准包装: 1,000
PWM 型: 电流模式
输出数: 2
频率 - 最大: 340kHz
占空比: 93%
电源电压: 4.5 V ~ 24 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 24-SSOP(0.154",3.90mm 宽)
包装: 带卷 (TR)
ISL6440
Input Voltage Range
V IN ( min ) = ? -------------------------------- ? + V d2 – V d1
The ISL6440 is designed to operate from input supplies
ranging from 4.5V to 24V. However, the input voltage range
can be effectively limited by the available maximum duty
cycle (D MAX = 93%).
V OUT + V d1
? 0.93 ?
where,
Vd1 = Sum of the parasitic voltage drops in the inductor
discharge path, including the lower FET, inductor and PC
board.
Vd2 = Sum of the voltage drops in the charging path,
VCC5
BOOT
UGATE
PHASE
ISL6440
VIN
V IN ( max ) ≤ ----------------------------------------------------
( 7 ) ( R CS )
( I OC ) ( R DS ( on ) )
including the upper FET, inductor and PC board resistances.
The maximum input voltage and minimum output voltage is
limited by the minimum on-time (t ON(min) ).
V OUT
t ON ( min ) × 300kHz
where, t ON(min) = 30ns
Gate Control Logic
The gate control logic translates generated PWM signals
into gate drive signals providing amplification, level shifting
and shoot-through protection. The gate drivers have some
circuitry that helps optimize the ICs performance over a wide
range of operational conditions. As MOSFET switching
times can vary dramatically from type to type and with input
voltage, the gate control logic provides adaptive dead time
by monitoring real gate waveforms of both the upper and the
lower MOSFETs. Shoot-through control logic provides a
20ns deadtime to ensure that both the upper and lower
MOSFETs will not turn on simultaneously and cause a shoot-
through condition.
Gate Drivers
The low-side gate driver is supplied from VCC5 and provides
a peak sink/source current of 400mA. The high-side gate
driver is also capable of 400mA current. Gate-drive voltages
for the upper N-Channel MOSFET are generated by the
flying capacitor boot circuit. A boot capacitor connected from
the BOOT pin to the PHASE node provides power to the
high side MOSFET driver. To limit the peak current in the IC,
an external resistor may be placed between the UGATE pin
and the gate of the external MOSFET. This small series
resistor also damps any oscillations caused by the resonant
tank of the parasitic inductances in the traces of the board
and the FET’s gate to drain capacitance.
10
FIGURE 15.
At start-up the low-side MOSFET turns on and forces
PHASE to ground in order to charge the BOOT capacitor to
5V. After the low-side MOSFET turns off, the high-side
MOSFET is turned on by closing an internal switch between
BOOT and UGATE. This provides the necessary gate-to-
source voltage to turn on the upper MOSFET, an action that
boosts the 5V gate drive signal above VIN. The current
required to drive the upper MOSFET is drawn from the
internal 5V regulator.
Protection Circuits
The converter output is monitored and protected against
overload, short circuit and undervoltage conditions. A
sustained overload on the output sets the PGOOD low and
initiates hiccup mode.
Both PWM controllers use the lower MOSFET’s on-
resistance, r DS(ON) , to monitor the current in the converter.
The sensed voltage drop is compared with a threshold set by
a resistor connected from the OCSETx pin to ground.
R OCSET = -------------------------------------------
where, I OC is the desired overcurrent protection threshold,
and R CS is a value of the current sense resistor connected
to the ISENx pin. If the lower MOSFET current exceeds the
overcurrent threshold, an overcurrent condition is detected.
If overcurrent is detected for 2 consecutive clock cycles then
the IC enters a hiccup mode by turning off the gate drivers
and entering into soft-start. The IC will cycle 2 times through
soft-start before trying to restart. The IC will continue to cycle
through soft-start until the overcurrent condition is removed.
Because of the nature of this current sensing technique, and
to accommodate a wide range of r DS(ON) variations, the
value of the overcurrent threshold should represent an
overload current about 150% to 180% of the maximum
operating current. If more accurate current protection is
desired place a current sense resistor in series with the
lower MOSFET source.
FN9040.2
October 4, 2005
相关PDF资料
PDF描述
VE-25P-EY-F4 CONVERTER MOD DC/DC 13.8V 50W
SH472M010ST CAP ALUM 4700UF 10V 20% RADIAL
H2ABT-10110-W4-ND JUMPER-H1502TR/A2015W/H1500TR10"
VI-B4J-EV-F3 CONVERTER MOD DC/DC 36V 150W
CAT706ZI-GT3 IC SUPERVISOR CIRCUIT 8-MSOP
相关代理商/技术参数
参数描述
ISL6441IR 功能描述:IC CTRLR SGL/STEP DOWN PWM 28QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 电源管理 - 专用 系列:- 应用说明:Ultrasound Imaging Systems Application Note 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:37 系列:- 应用:医疗用超声波成像,声纳 电流 - 电源:- 电源电压:2.37 V ~ 6 V 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:56-WFQFN 裸露焊盘 供应商设备封装:56-TQFN-EP(8x8) 包装:管件
ISL6441IR-T 功能描述:IC CTRLR PWM DUAL 1.4MHZ 28-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 电源管理 - 专用 系列:- 应用说明:Ultrasound Imaging Systems Application Note 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:37 系列:- 应用:医疗用超声波成像,声纳 电流 - 电源:- 电源电压:2.37 V ~ 6 V 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:56-WFQFN 裸露焊盘 供应商设备封装:56-TQFN-EP(8x8) 包装:管件
ISL6441IR-TK 功能描述:IC CTRLR PWM DUAL 1.4MHZ 28-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 电源管理 - 专用 系列:- 应用说明:Ultrasound Imaging Systems Application Note 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:37 系列:- 应用:医疗用超声波成像,声纳 电流 - 电源:- 电源电压:2.37 V ~ 6 V 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:56-WFQFN 裸露焊盘 供应商设备封装:56-TQFN-EP(8x8) 包装:管件
ISL6441IRZ 功能描述:IC CTRLR SGL/STEP DOWN PWM 28QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 电源管理 - 专用 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:50 系列:- 应用:热电冷却器 电流 - 电源:- 电源电压:3 V ~ 5.5 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:28-SOIC(0.173",4.40mm 宽)裸露焊盘 供应商设备封装:28-TSSOP 裸露焊盘 包装:管件 产品目录页面:1410 (CN2011-ZH PDF)
ISL6441IRZS2695 制造商:Intersil Corporation 功能描述: