参数资料
型号: ISL6721AV
厂商: Intersil
文件页数: 14/22页
文件大小: 0K
描述: IC REG CTRLR PWM CM 16-TSSOP
标准包装: 96
PWM 型: 电流模式
输出数: 1
频率 - 最大: 1MHz
占空比: 100%
电源电压: 9 V ~ 18 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 105°C
封装/外壳: 16-TSSOP(0.173",4.40mm 宽)
包装: 管件
ISL6721
To minimize the transformer leakage inductance, the primary
was split into two sections connected in parallel and
positioned such that the other windings were sandwiched
between them. The output windings were configured so that
the 1.8V winding is a tap off of the 3.3V winding. Tapping the
1.8V output requires that the shared portion of the
secondary conduct the combined current of both outputs.
The secondary wire gauge must be selected accordingly.
The determination of current carrying capacity of wire is a
device to enter a thermal runaway situation without proper
heatsinking. As a general rule of thumb, doubling the +25°C
r DS(ON) specification yields a reasonable value for
estimating the conduction losses at +125°C junction
temperature.
The switching losses have two components, capacitive
switching losses and voltage/current overlap losses. The
capacitive losses occur during turn on of the device and may
be calculated in Equation 19:
Pswcap = --- ? Cfet ? Vin ? f sw
compromise between performance, size, and cost. It is
affected by many design constraints such as operating
1 2
2
W
(EQ. 19)
Ichg ? t (EQ. 20)
frequency (harmonic content of the waveform) and the
winding proximity/geometry. It generally ranges between 250
and 1000 circular mils per ampere. A circular mil is defined
as the area of a circle 0.001” (1 mil) in diameter. As the
frequency of operation increases, the AC resistance of the
wire increases due to skin and proximity effects. Using
heavier gauge wire may not alleviate the problem. Instead
multiple strands of wire in parallel must be used. In some
cases, Litz wire is required.
The winding configuration selected is:
Primary #1: 40T, 2 #30 bifilar
Secondary: 5T, 0.003” (3 mil) copper foil tapped at 3T
Bias: 17T #32
Primary #2: 40T, 2 #30 bifilar
The internal spacing and insulation system was designed for
1500VDC dielectric withstand rating between the primary
where Cfet is the equivalent output capacitance of the
MOSFET. Device output capacitance is specified on
datasheets as Coss and is non-linear with applied voltage.
To find the equivalent discrete capacitance, Cfet, a charge
model is used. Using a known current source, the time
required to charge the MOSFET drain to the desired
operating voltage is determined and the equivalent
capacitance may be calculated in Equation 20:
Cfet = -------------------- F
V
The other component of the switching loss is due to the
overlap of voltage and current during the switching
transition. A switching transition occurs when the MOSFET
is in the process of either turning on or off. Since the load is
inductive, there is no overlap of voltage and current during
the turn on transition, so only the turn off transition is of
significance. The power dissipation may be estimated using
Equation 21:
P sw ≈ --- ? I PPK ? V IN ? t OL ? f sw
and secondary windings.
Power MOSFET Selection
1
x
(EQ. 21)
Selection of the main switching MOSFET requires
consideration of the voltage and current stresses that will be
encountered in the application, the power dissipated by the
device, its size, and its cost.
The input voltage range of the converter is 36VDC to
75VDC. This suggests a MOSFET with a voltage rating of
150V is required due to the flyback voltage likely to be seen
on the primary of the isolation transformer.
The losses associated with MOSFET operation may be
divided into three categories: conduction, switching, and
gate drive.
The conduction losses are due to the MOSFET’s ON
resistance.
where t OL is the duration of the overlap period and x ranges
from about 3 through 6 in typical applications and depends
on where the waveforms intersect. This estimate may predict
higher dissipation than is realized because a portion of the
turn off drain current is attributable to the charging of the
device output capacitance (Coss) and is not dissipative
during this portion of the switching cycle.
Ip p k
Pcond = r DS ( ON ) ? Iprms
2
W
(EQ. 18)
V D -S
Tol
where r DS(ON) is the ON resistance of the MOSFET and
Iprms is the RMS primary current. Determining the
conduction losses is complicated by the variation of r DS(ON)
with temperature. As junction temperature increases, so
does r DS(ON) , which increases losses and raises the
junction temperature more, and so on. It is possible for the
14
FIGURE 6. SWITCHING CYCLE
The final component of MOSFET loss is caused by the
charging of the gate capacitance through the device gate
resistance. Depending on the relative value of any external
FN9110.6
March 5, 2008
相关PDF资料
PDF描述
ISL6723AABZ IC REG CTRLR PWM CM 16-SOIC
ISL6726AAZ-T7A IC REG CTRLR ISO PWM CM 20-QSOP
ISL6729IU-T IC REG CTRLR BST FLYBK ISO 8MSOP
ISL6740AIVZA IC REG CTRLR PWM VM 16-TSSOP
ISL6741IV-T IC REG CTRLR PWM CM 16-TSSOP
相关代理商/技术参数
参数描述
ISL6721AV-T 功能描述:电流型 PWM 控制器 FLEXIBLE SINGLE END CUR MODE PWM RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6721AVZ 功能描述:电流型 PWM 控制器 FLEX SNG ENDED CUR MODE PWM CONTRLR RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6721AVZ-T 功能描述:IC REG CTRLR PWM CM 16-TSSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:275kHz 占空比:50% 电源电压:18 V ~ 110 V 降压:无 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:是 工作温度:-40°C ~ 85°C 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR)
ISL6721EVAL1 功能描述:EVALUATION BOARD ISL6721 RoHS:否 类别:RF/IF 和 RFID >> RF 评估和开发套件,板 系列:- 标准包装:1 系列:- 类型:GPS 接收器 频率:1575MHz 适用于相关产品:- 已供物品:模块 其它名称:SER3796
ISL6721EVAL3Z 功能描述:EVAL BOARD 3 FOR ISL6721 RoHS:是 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:* 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:True Shutdown™ 主要目的:DC/DC,步升 输出及类型:1,非隔离 功率 - 输出:- 输出电压:- 电流 - 输出:1A 输入电压:2.5 V ~ 5.5 V 稳压器拓扑结构:升压 频率 - 开关:3MHz 板类型:完全填充 已供物品:板 已用 IC / 零件:MAX8969