参数资料
型号: LMX2575HVMX-12
厂商: NATIONAL SEMICONDUCTOR CORP
元件分类: 稳压器
英文描述: 3.2 A SWITCHING REGULATOR, 63 kHz SWITCHING FREQ-MAX, PDSO24
封装: SMT-24
文件页数: 10/30页
文件大小: 676K
代理商: LMX2575HVMX-12
Application Hints (Continued)
of printed circuit board copper, such as a ground plane.
Large areas of copper provide the best transfer of heat to the
surrounding air. Copper on both sides of the board is also
helpful in getting the heat away from the package, even if
there is no direct copper contact between the two sides.
Thermal resistance numbers as low as 40C/W for the SO
package, and 30C/W for the N package can be realized with
a carefully engineered pc board.
Included on the
Switchers Made Simple design software is
a more precise (non-linear) thermal model that can be used
to determine junction temperature with different input-output
parameters or different component values. It can also calcu-
late the heat sink thermal resistance required to maintain the
regulators junction temperature below the maximum operat-
ing temperature.
Additional Applications
INVERTING REGULATOR
Figure 10 shows a LM2575-12 in a buck-boost configuration
to generate a negative 12V output from a positive input volt-
age. This circuit bootstraps the regulator’s ground pin to the
negative output voltage, then by grounding the feedback pin,
the regulator senses the inverted output voltage and regu-
lates it to 12V.
For an input voltage of 12V or more, the maximum available
output current in this configuration is approximately 0.35A. At
lighter loads, the minimum input voltage required drops to
approximately 4.7V.
The switch currents in this buck-boost configuration are
higher than in the standard buck-mode design, thus lowering
the available output current. Also, the start-up input current
of the buck-boost converter is higher than the standard
buck-mode regulator, and this may overload an input power
source with a current limit less than 1.5A. Using a delayed
turn-on or an undervoltage lockout circuit (described in the
next section) would allow the input voltage to rise to a high
enough level before the switcher would be allowed to turn
on.
Because of the structural differences between the buck and
the buck-boost regulator topologies, the buck regulator de-
sign procedure section can not be used to to select the in-
ductor or the output capacitor. The recommended range of
inductor values for the buck-boost design is between 68 H
and 220 H, and the output capacitor values must be larger
than what is normally required for buck designs. Low input
voltages or high output currents require a large value output
capacitor (in the thousands of micro Farads).
The peak inductor current, which is the same as the peak
switch current, can be calculated from the following formula:
Where f
osc = 52 kHz. Under normal continuous inductor cur-
rent operating conditions, the minimum V
IN represents the
worst case. Select an inductor that is rated for the peak cur-
rent anticipated.
Also, the maximum voltage appearing across the regulator is
the absolute sum of the input and output voltage. For a 12V
output, the maximum input voltage for the LM2575 is +28V,
or +48V for the LM2575HV.
The
Switchers Made Simple (version 3.3) design software
can be used to determine the feasibility of regulator designs
using different topologies, different input-output parameters,
different components, etc.
NEGATIVE BOOST REGULATOR
Another variation on the buck-boost topology is the negative
boost configuration. The circuit in
Figure 11 accepts an input
voltage ranging from 5V to 12V and provides a regulated
12V output. Input voltages greater than 12V will cause the
output to rise above 12V, but will not damage the regulator.
Because of the boosting function of this type of regulator, the
switch current is relatively high, especially at low input volt-
ages. Output load current limitations are a result of the maxi-
mum current rating of the switch. Also, boost regulators can
not provide current limiting load protection in the event of a
shorted load, so some other means (such as a fuse) may be
necessary.
DS011475-15
FIGURE 10. Inverting Buck-Boost Develops 12V
www.national.com
18
相关PDF资料
PDF描述
LS1001-7EPD2TB1 1-OUTPUT 100 W AC-DC REG PWR SUPPLY MODULE
LS1001-7EPD9B1 1-OUTPUT 100 W AC-DC REG PWR SUPPLY MODULE
LS1001-7PD4 1-OUTPUT 100 W AC-DC REG PWR SUPPLY MODULE
LS1001-7PT 1-OUTPUT 100 W AC-DC REG PWR SUPPLY MODULE
LS1001-9RD6TB1 1-OUTPUT 100 W AC-DC REG PWR SUPPLY MODULE
相关代理商/技术参数
参数描述
LMX2581 制造商:TI 制造商全称:Texas Instruments 功能描述:LMX2581 Wideband Frequency Synthesizer with Integrated VCO
LMX2581EVAL/NOPB 功能描述:时钟和定时器开发工具 LMX2581 EVAL MOD RoHS:否 制造商:Texas Instruments 产品:Evaluation Modules 类型:Clock Conditioners 工具用于评估:LMK04100B 频率:122.8 MHz 工作电源电压:3.3 V
LMX2581EVM 功能描述:LMX2581 - Timing, Frequency Synthesizer Evaluation Board 制造商:texas instruments 系列:- 零件状态:有效 主要用途:计时,频率合成器 嵌入式:- 使用的 IC/零件:LMX2581 主要属性:带 VCO 的单路分数-N PLL 辅助属性:- 所含物品:板 标准包装:1
LMX2581SQ 制造商:TI 制造商全称:Texas Instruments 功能描述:LMX2581 Wideband Frequency Synthesizer with Integrated VCO
LMX2581SQ/NOPB 制造商:Texas Instruments 功能描述:IC FREQ SYNTHESIZER VCO 32WQFN 制造商:Texas Instruments 功能描述:CLOCK GENERATION/OTHER IC