参数资料
型号: LT1374IR-5#TRPBF
厂商: LINEAR TECHNOLOGY CORP
元件分类: 稳压器
英文描述: 8.5 A SWITCHING REGULATOR, 560 kHz SWITCHING FREQ-MAX, PSSO7
封装: PLASTIC, D2PAK-7
文件页数: 4/32页
文件大小: 698K
代理商: LT1374IR-5#TRPBF
12
LT1374
1374fd
APPLICATIONS INFORMATION
WU
U
Many engineers have heard that solid tantalum capacitors
are prone to failure if they undergo high surge currents.
This is historically true, and type TPS capacitors are
specially tested for surge capability, but surge ruggedness
is not a critical issue with the
output capacitor. Solid
tantalum capacitors fail during very high
turn-on surges,
which do not occur at the output of regulators. High
discharge surges, such as when the regulator output is
dead shorted, do not harm the capacitors.
Unlike the input capacitor, RMS ripple current in the
output capacitor is normally low enough that ripple cur-
rent rating is not an issue. The current waveform is
triangular with a typical value of 200mARMS. The formula
to calculate this is:
Output Capacitor Ripple Current (RMS):
Ceramic Capacitors
Higher value, lower cost ceramic capacitors are now
becoming available in smaller case sizes. These are tempt-
ing for switching regulator use because of their very low
ESR. Unfortunately, the ESR is so low that it can cause
loop stability problems. Solid tantalum capacitor’s ESR
generates a loop “zero” at 5kHz to 50kHz that is instrumen-
tal in giving acceptable loop phase margin. Ceramic
capacitors remain capacitive to beyond 300kHz and usu-
ally resonate with their ESL before ESR becomes effective.
They are appropriate for input bypassing because of their
high ripple current ratings and tolerance of turn-on surges.
Linear Technology plans to issue a design note on the use
of ceramic capacitors in the near future.
OUTPUT RIPPLE VOLTAGE
Figure 3 shows a typical output ripple voltage waveform
for the LT1374. Ripple voltage is determined by the high
frequency impedance of the output capacitor, and ripple
current through the inductor. Peak-to-peak ripple current
through the inductor into the output capacitor is:
saturation), average current (to limit heating), and fault
current (if the inductor gets too hot, wire insulation will
melt and cause turn-to-turn shorts). Keep in mind that
all good things like high efficiency, low profile, and high
temperature operation will increase cost, sometimes
dramatically. Get a quote on the cheapest unit first to
calibrate yourself on price, then ask for what you really
want.
5. After making an initial choice, consider the secondary
things like output voltage ripple, second sourcing, etc.
Use the experts in the Linear Technology’s applica-
tions department if you feel uncertain about the final
choice. They have experience with a wide range of
inductor types and can tell you about the latest devel-
opments in low profile, surface mounting, etc.
Output Capacitor
The output capacitor is normally chosen by its Effective
Series Resistance (ESR), because this is what determines
output ripple voltage. At 500kHz, any polarized capacitor
is essentially resistive. To get low ESR takes
volume, so
physically smaller capacitors have high ESR. The ESR
range for typical LT1374 applications is 0.05 to 0.2. A
typical output capacitor is an AVX type TPS, 100F at 10V,
with a guaranteed ESR less than 0.1. This is a “D” size
surface mount solid tantalum capacitor. TPS capacitors
are specially constructed and tested for low ESR, so they
give the lowest ESR for a given volume. The value in
microfarads is not particularly critical, and values from
22F to greater than 500F work well, but you cannot
cheat mother nature on ESR. If you find a tiny 22F solid
tantalum capacitor, it will have high ESR, and output ripple
voltage will be terrible. Table 3 shows some typical solid
tantalum surface mount capacitors.
Table 3. Surface Mount Solid Tantalum Capacitor ESR
and Ripple Current
E Case Size
ESR (Max.,
)
Ripple Current (A)
AVX TPS, Sprague 593D
0.1 to 0.3
0.7 to 1.1
AVX TAJ
0.7 to 0.9
0.4
D Case Size
AVX TPS, Sprague 593D
0.1 to 0.3
0.7 to 1.1
C Case Size
AVX TPS
0.2 (typ)
0.5 (typ)
相关PDF资料
PDF描述
LM4051AIX3-1.2+T 1-OUTPUT TWO TERM VOLTAGE REFERENCE, 1.225 V, PDSO3
LES25A48-1V5REJ 1-OUTPUT 37.5 W DC-DC REG PWR SUPPLY MODULE
LM22674QMRX-ADJ 0.9 A SWITCHING REGULATOR, 600 kHz SWITCHING FREQ-MAX, PDSO8
LX432CSCT 1-OUTPUT TWO TERM VOLTAGE REFERENCE, PDSO3
LS5320-9RD4T 2-OUTPUT 100 W AC-DC PWR FACTOR CORR MODULE
相关代理商/技术参数
参数描述
LT1374IRPBF 制造商:Linear Technology 功能描述:DC-DC Converter Step-Down 5-25V DDPAK8
LT1374IR-SYNC 功能描述:IC REG BUCK ADJ 4.5A D2PAK RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT
LT1374IR-SYNC#PBF 功能描述:IC REG BUCK ADJ 4.5A D2PAK RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT
LT1374IS8 功能描述:IC REG BUCK ADJ 4.5A 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT
LT1374IS8#PBF 功能描述:IC REG BUCK ADJ 4.5A 8SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT