参数资料
型号: LT1944-1EMS#TRPBF
厂商: Linear Technology
文件页数: 5/8页
文件大小: 0K
描述: IC REG BST ADJ 0.1A/175MA 10MSOP
标准包装: 2,500
类型: 升压(升压)
输出类型: 可调式
输出数: 2
输出电压: 1.23 V ~ 36 V
输入电压: 1.2 V ~ 15 V
电流 - 输出: 100mA,175mA
同步整流器:
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 10-TFSOP,10-MSOP(0.118",3.00mm 宽)
包装: 带卷 (TR)
供应商设备封装: 10-MSOP
LT1944-1
APPLICATIO S I FOR ATIO
Choosing an Inductor
Several recommended inductors that work well with the
LT1944-1 are listed in Table 1, although there are many
other manufacturers and devices that can be used. Con-
sult each manufacturer for more detailed information and
for their entire selection of related parts. Many different
sizes and shapes are available. Use the equations and
recommendations in the next few sections to find the
correct inductance value for your design.
Table 1. Recommended Inductors
systems with output voltages below 7V, a 10 μ H inductor
is the best choice, even though the equation above might
specify a smaller value. This is due to the inductor current
overshoot that occurs when very small inductor values are
used (see Current Limit Overshoot section).
For higher output voltages, the formula above will give
large inductance values. For a 2V to 20V converter (typical
LCD Bias application), a 74 μ H inductor is called for with
the above equation, but a 22 μ H inductor could be used
without excessive reduction in maximum output current.
PART VALUE ( μ H) MAX DCR ( ? )
LQH3C4R7 4.7 0.26
VENDOR
Murata
Inductor Selection—SEPIC Regulator
LQH3C100
LQH3C220
CD43-4R7
CD43-100
CDRH4D18-4R7
10
22
4.7
10
4.7
0.30
0.92
0.11
0.18
0.16
(714) 852-2001
www.murata.com
Sumida
(847) 956-0666
www.sumida.com
The formula below calculates the approximate inductor
value to be used for a SEPIC regulator using the LT1944-1.
As for the boost inductor selection, a larger or smaller
value can be used.
L = 2 ? OUT D
? t OFF
CDRH4D18-100
DO1608-472
DO1608-103
DO1608-223
10
4.7
10
22
0.20
0.09
0.16
0.37
Coilcraft
(847) 639-6400
www.coilcraft.com
? V + V
? I LIM
?
?
I PEAK = I LIM + ?
? 100 ns
Inductor Selection—Boost Regulator
The formula below calculates the appropriate inductor
value to be used for a boost regulator using the LT1944-1
(or at least provides a good starting point). This value
provides a good tradeoff in inductor size and system
performance. Pick a standard inductor close to this value.
A larger value can be used to slightly increase the available
output current, but limit it to around twice the value
calculated below, as too large of an inductance will in-
crease the output voltage ripple without providing much
additional output current. A smaller value can be used
(especially for systems with output voltages greater than
12V) to give a smaller physical size. Inductance can be
calculated as:
Current Limit Overshoot
For the constant off-time control scheme of the LT1944-1,
the power switch is turned off only after the current limit
is reached. There is a 100ns delay between the time when
the current limit is reached and when the switch actually
turns off. During this delay, the inductor current exceeds
the current limit by a small amount. The peak inductor
current can be calculated by:
? V IN(MAX) ? V SAT ?
? L ?
Where V SAT = 0.25V (switch saturation voltage). The
current overshoot will be most evident for systems with
V OUT ? V IN ( ) + V D
L =
MIN
I LIM
t OFF
high input voltages and for systems where smaller induc-
tor values are used. This overshoot can be beneficial as it
helps increase the amount of available output current for
smaller inductor values. This will be the peak current seen
where V D = 0.4V (Schottky diode voltage), I LIM = 100mA
(or 175mA) and t OFF = 400ns (or 1.5 μ s); for designs with
varying V IN such as battery powered applications, use the
minimum V IN value in the above equation. For most
by the inductor (and the diode) during normal operation.
For designs using small inductance values (especially at
input voltages greater than 5V), the current limit over-
shoot can be quite high. Although it is internally current
5
相关PDF资料
PDF描述
CGS154ULX5L3PD CAP ALUM 150000UF 40V SCREW
CGH152T500V5C CAP ALUM 1500UF 500V SCREW
LQR2G562MSEH CAP ALUM 5600UF 400V 20% SCREW
LQR2G562MSEG CAP ALUM 5600UF 400V 20% SCREW
CGS602T300X8L CAP ALUM 6000UF 300V SCREW
相关代理商/技术参数
参数描述
LT1944EMS 功能描述:IC REG BOOST ADJ 0.35A DL 10MSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:升压(升压) 输出类型:可调式 输出数:1 输出电压:1.24 V ~ 30 V 输入电压:1.5 V ~ 12 V PWM 型:电流模式,混合 频率 - 开关:600kHz 电流 - 输出:500mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR) 供应商设备封装:8-SOIC
LT1944EMS#PBF 功能描述:IC REG BOOST ADJ 0.35A DL 10MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:250 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V 输入电压:2.05 V ~ 6 V PWM 型:电压模式 频率 - 开关:2MHz 电流 - 输出:500mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:6-UFDFN 包装:带卷 (TR) 供应商设备封装:6-SON(1.45x1) 产品目录页面:1032 (CN2011-ZH PDF) 其它名称:296-25628-2
LT1944EMS#TR 功能描述:IC REG BOOST ADJ 0.35A DL 10MSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:升压(升压) 输出类型:可调式 输出数:1 输出电压:1.24 V ~ 30 V 输入电压:1.5 V ~ 12 V PWM 型:电流模式,混合 频率 - 开关:600kHz 电流 - 输出:500mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR) 供应商设备封装:8-SOIC
LT1944EMS#TRPBF 功能描述:IC REG BOOST ADJ 0.35A DL 10MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:升压(升压) 输出类型:可调式 输出数:1 输出电压:1.24 V ~ 30 V 输入电压:1.5 V ~ 12 V PWM 型:电流模式,混合 频率 - 开关:600kHz 电流 - 输出:500mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR) 供应商设备封装:8-SOIC
LT1944EMSPBF 制造商:Linear Technology 功能描述:Conv DC-DC Dual Step-Up 1.2-15V MSOP10