参数资料
型号: LTC1871EMS
厂商: Linear Technology
文件页数: 25/36页
文件大小: 0K
描述: IC REG CTRLR BST FLYBK CM 10MSOP
标准包装: 50
PWM 型: 电流模式
输出数: 1
频率 - 最大: 1MHz
占空比: 97%
电源电压: 2.5 V ~ 36 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 10-TFSOP,10-MSOP(0.118",3.00mm 宽)
包装: 管件
LTC1871
APPLICATIONS INFORMATION
It is worth noting here that SEPIC converters that operate
at high duty cycles (i.e., that develop a high output volt-
age from a low input voltage) can have very high input
currents, relative to the output current. Be sure to check
that the maximum load current will not overload the input
supply.
example, a Coiltronix CTX10-4 is a 10μH inductor with two
windings. With the windings in parallel, 10μH inductance is
obtained with a current rating of 4A (the number of turns
hasn’t changed, but the wire diameter has doubled). Split-
ting the two windings creates two 10μH inductors with a
current rating of 2A each. Therefore, substituting 2L yields
the following equation for coupled inductors:
SEPIC Converter: Inductor Selection
For most SEPIC applications the equal inductor values
will fall in the range of 10μH to 100μH. Higher values will
L1 = L2 =
V IN(MIN)
2 ? I L ? f
? D MAX
reduce the input ripple voltage and reduce the core loss.
Lower inductor values are chosen to reduce physical size
and improve transient response.
Like the boost converter, the input current of the SEPIC
converter is calculated at full load current and minimum
input voltage. The peak inductor current can be signi?cantly
higher than the output current, especially with smaller in-
ductors and lighter loads. The following formulas assume
CCM operation and calculate the maximum peak inductor
Specify the maximum inductor current to safely handle
I L(PK) speci?ed in the equation above. The saturation
current rating for the inductor should be checked at the
minimum input voltage (which results in the highest
inductor current) and maximum output current.
SEPIC Converter: Power MOSFET Selection
The power MOSFET serves two purposes in the LTC1871:
it represents the main switching element in the power path,
I L1(PEAK) = 1 + ?I O(MAX) ?
currents at minimum V IN :
2
V O + V D
V IN(MIN)
and its R DS(ON) represents the current sensing element
for the control loop. Important parameters for the power
MOSFET include the drain-to-source breakdown voltage
(BV DSS ), the threshold voltage (V GS(TH) ), the on-resistance
I L2(PEAK) = 1 +
2
?I O(MAX) ?
V IN(MIN) + V D
V IN(MIN)
(R DS(ON) ) versus gate-to-source voltage, the gate-to-source
and gate-to-drain charges (Q GS and Q GD , respectively),
the maximum drain current (I D(MAX) ) and the MOSFET’s
V IN(MIN)
I L = ?I O(MAX) ?
Theripplecurrentintheinductoristypically20%to40%
(i.e., a range of ‘ χ ’ from 0.20 to 0.40) of the maximum
average input current occurring at V IN(MIN) and I O(MAX) and
Δ I L1 = Δ I L2 . Expressing this ripple current as a function of
the output current results in the following equations for
calculating the inductor value:
L = ? D MAX
I L ? f
where:
D MAX
1– D MAX
By making L1 = L2 and winding them on the same core,
the value of inductance in the equation above is replace
by 2L due to mutual inductance. Doing this maintains the
same ripple current and energy storage in the inductors. For
thermal resistances (R TH(JC) and R TH(JA) ).
The gate drive voltage is set by the 5.2V INTV CC low
dropout regulator. Consequently, logic-level threshold
MOSFETs should be used in most LTC1871 applications.
If low input voltage operation is expected (e.g., supplying
power from a lithium-ion battery), then sublogic-level
threshold MOSFETs should be used.
The maximum voltage that the MOSFET switch must
sustain during the off-time in a SEPIC converter is equal
to the sum of the input and output voltages (V O + V IN ).
As a result, careful attention must be paid to the BV DSS
speci?cations for the MOSFETs relative to the maximum
actual switch voltage in the application. Many logic-level
devices are limited to 30V or less. Check the switching
waveforms directly across the drain and source terminals
of the power MOSFET to ensure the V DS remains below
the maximum rating for the device.
1871fe
25
相关PDF资料
PDF描述
IDCS2512ER1R5M INDUCTOR POWER 1.5UH 2.8A SMD
IDCS2512ER1R0M INDUCTOR POWER 1.0UH 3.0A SMD
VI-JWL-EY-F2 CONVERTER MOD DC/DC 28V 50W
ASM10DRYN-S13 CONN EDGECARD 20POS .156 EXTEND
UPJ1V102MHD6 CAP ALUM 1000UF 35V 20% RADIAL
相关代理商/技术参数
参数描述
LTC1871EMS#PBF 功能描述:IC REG CTRLR BST FLYBK CM 10MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 特色产品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 标准包装:1 系列:PowerWise® PWM 型:电压模式 输出数:1 频率 - 最大:1MHz 占空比:81% 电源电压:4.5 V ~ 18 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-5°C ~ 125°C 封装/外壳:32-WFQFN 裸露焊盘 包装:Digi-Reel® 产品目录页面:1303 (CN2011-ZH PDF) 其它名称:LM3754SQDKR
LTC1871EMS#TR 功能描述:IC REG CTRLR BST FLYBK CM 10MSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC1871EMS#TRPBF 功能描述:IC REG CTRLR BST FLYBK CM 10MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC1871EMS-1#PBF 功能描述:IC REG CTRLR BST FLYBK CM 10MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC1871EMS-1#TRPBF 功能描述:IC REG CTRLR BST FLYBK CM 10MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)