参数资料
型号: LTC1878EMS8#TR
厂商: Linear Technology
文件页数: 9/16页
文件大小: 0K
描述: IC REG BUCK SYNC ADJ 0.6A 8MSOP
标准包装: 2,500
类型: 降压(降压)
输出类型: 可调式
输出数: 1
输出电压: 0.8 V ~ 6 V
输入电压: 2.65 V ~ 6 V
PWM 型: 电流模式,混合
频率 - 开关: 550kHz
电流 - 输出: 600mA
同步整流器:
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 8-TSSOP,8-MSOP(0.118",3.00mm 宽)
包装: 带卷 (TR)
供应商设备封装: 8-MSOP
其它名称: LTC1878EMS8TR
LTC1878
APPLICATIO S I FOR ATIO
V OUT ? 1 ? OUT ?
? I L =
1
( f )( L )
? V ?
? V IN ?
(1)
New designs for surface mount inductors are available
from Coiltronics, Coilcraft, Dale and Sumida.
[ V OUT ( V IN ? V OUT ) ] 1 / 2
Accepting  larger  values  of  ?I L allows  the  use  of  low
inductance, but results in higher output voltage ripple and
greater core losses. A reasonable starting point for setting
ripple current is ? I L = 0.4(I MAX ).
The inductor value also has an effect on Burst Mode
operation. The transition to low current operation begins
when the inductor current peaks fall to approximately
250mA. Lower inductor values (higher ? I L ) will cause this
to occur at lower load currents, which can cause a dip in
efficiency in the upper range of low current operation. In
Burst Mode operation, lower inductance values will cause
the burst frequency to increase.
Inductor Core Selection
Once the value for L is known, the type of inductor must be
selected. High efficiency converters generally cannot
afford the core loss found in low cost powdered iron cores,
forcing the use of more expensive ferrite, molypermalloy,
or Kool M μ ? cores. Actual core loss is independent of core
size for a fixed inductor value, but it is very dependent on
inductance selected. As inductance increases, core losses
go down. Unfortunately, increased inductance requires
more turns of wire and therefore copper losses will
increase.
C IN and C OUT Selection
In continuous mode, the source current of the top MOSFET
is a square wave of duty cycle V OUT /V IN . To prevent large
voltage transients, a low ESR input capacitor sized for the
maximum RMS current must be used. The maximum
RMS capacitor current is given by:
C IN required I RMS ? I OMAX
V IN
This formula has a maximum at V IN = 2V OUT , where
I RMS = I OUT /2. This simple worst-case condition is com-
monly used for design because even significant deviations
do not offer much relief. Note the capacitor manufacturer’s
ripple current ratings are often based on 2000 hours of life.
This makes it advisable to further derate the capacitor, or
choose a capacitor rated at a higher temperature than
required. Several capacitors may also be paralleled to
meet size or height requirements in the design. Always
consult the manufacturer if there is any question.
The selection of C OUT is driven by the required effective
series resistance (ESR). Typically, once the ESR require-
ment is satisfied, the capacitance is adequate for filtering.
The output ripple ? V OUT is determined by:
? V OUT ? ? I L ? ESR +
8 fC OUT ?
Ferrite designs have very low core losses and are pre-
ferred at high switching frequencies, so design goals can
concentrate on copper loss and preventing saturation.
?
?
1 ?
?
Ferrite core material saturates “hard,” which means that
inductance collapses abruptly when the peak design cur-
rent is exceeded. This results in an abrupt increase in
inductor ripple current and consequent output voltage
ripple. Do not allow the core to saturate!
Kool M μ (from Magnetics, Inc.) is a very good, low loss
core material for toroids with a “soft” saturation character-
istic. Molypermalloy is slightly more efficient at high
(>200kHz) switching frequencies but quite a bit more
expensive. Toroids are very space efficient, especially
when you can use several layers of wire, while inductors
wound on bobbins are generally easier to surface mount.
where f = operating frequency, C OUT = output capacitance
and ? I L = ripple current in the inductor. The output ripple
is highest at maximum input voltage since ? I L increases
with input voltage. For the LTC1878, the general rule for
proper operation is:
C OUT required ESR < 0.25 ?
The choice of using a smaller output capacitance
increases the output ripple voltage due to the frequency
dependent term but can be compensated for by using
capacitor(s) of very low ESR to maintain low ripple
voltage. The I TH pin compensation components can be
Kool M μ is a registered trademark of Magnetics, Inc.
9
相关PDF资料
PDF描述
35PK33MEFC5X11 CAP ALUM 33UF 35V 20% RADIAL
GBC30DRAN-S734 CONN EDGECARD 60POS .100 R/A SLD
GBC30DRAH-S734 CONN EDGECARD 60POS .100 R/A SLD
LT1676CS8 IC REG BUCK ADJ 0.7A 8SOIC
LT1111CS8-12#TRPBF IC REG BUCK BOOST INV 12V 8SOIC
相关代理商/技术参数
参数描述
LTC1878EMS8TRPBF 制造商:Linear Technology 功能描述:
LTC1879EGN 功能描述:IC REG BUCK SYNC ADJ 1.2A 16SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LTC1879EGN#PBF 功能描述:IC REG BUCK SYNC ADJ 1.2A 16SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:250 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V 输入电压:2.05 V ~ 6 V PWM 型:电压模式 频率 - 开关:2MHz 电流 - 输出:500mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:6-UFDFN 包装:带卷 (TR) 供应商设备封装:6-SON(1.45x1) 产品目录页面:1032 (CN2011-ZH PDF) 其它名称:296-25628-2
LTC1879EGN#TR 功能描述:IC REG BUCK SYNC ADJ 1.2A 16SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LTC1879EGN#TRPBF 功能描述:IC REG BUCK SYNC ADJ 1.2A 16SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘