参数资料
型号: LTC3610EWP#TRPBF
厂商: Linear Technology
文件页数: 16/24页
文件大小: 0K
描述: IC REG BUCK SYNC ADJ 12A 64QFN
标准包装: 2,000
类型: 降压(降压)
输出类型: 可调式
输出数: 1
输出电压: 0.6 V ~ 24 V
输入电压: 4 V ~ 24 V
PWM 型: 电流模式
电流 - 输出: 12A
同步整流器:
工作温度: -40°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 64-VFQFN 裸露焊盘
包装: 带卷 (TR)
供应商设备封装: 64-QFN(9x9)
LTC3610
APPLICATIONS INFORMATION
Δ I L =
? ? 1– 12V ? ? = 4.4A
R ON =
= 182 k
4. C IN loss.Theinputcapacitorhasthedifficultjoboffiltering
the large RMS input current to the regulator. It must have
a very low ESR to minimize the AC I 2 R loss and sufficient
capacitance to prevent the RMS current from causing
additional upstream losses in fuses or batteries.
Other losses, including C OUT ESR loss, Schottky diode D1
conduction loss during dead time and inductor core loss
generally account for less than 2% additional loss.
When making adjustments to improve efficiency, the input
current is the best indicator of changes in efficiency. If you
make a change and the input current decreases, then the
efficiency has increased. If there is no change in input
current, then there is no change in efficiency.
Checking Transient Response
The regulator loop response can be checked by looking
at the load transient response. Switching regulators take
several cycles to respond to a step in load current. When
a load step occurs, V OUT immediately shifts by an amount
equal to Δ I LOAD (ESR), where ESR is the effective series
resistance of C OUT . Δ I LOAD also begins to charge or dis-
charge C OUT generating a feedback error signal used by the
regulator to return V OUT to its steady-state value. During
this recovery time, V OUT can be monitored for overshoot
or ringing that would indicate a stability problem. The I TH
pin external components shown in Figure 6 will provide
adequate compensation for most applications. For a
detailed explanation of switching control loop theory see
Application Note 76.
Design Example
As a design example, take a supply with the following
specifications: V IN = 5V to 24V (12V nominal), V OUT =
2.5V ± 5%, I OUT(MAX) = 12A, f = 550kHz. First, calculate
the timing resistor with V ON = V OUT :
1
( 550 kHz )( 10 pF )
and choose the inductor for about 40% ripple current at
the maximum V IN :
Selecting a standard value of 0.82μH results in a maximum
ripple current of:
2.5V ? 2.5V ?
( 550kHz ) ( 0.82 μ H )
Next, set up V RNG voltage and check the I LIMIT . Tying V RNG
to 0.5V will set the typical current limit to 16A, and tying
V RNG to GND will result in a typical current around 19A.
C IN is chosen for an RMS current rating of about 5A at
85°C. The output capacitors are chosen for a low ESR
of 0.013Ω to minimize output voltage changes due to
inductor ripple current and load steps. The ripple voltage
will be only:
Δ V OUT(RIPPLE) = Δ I L(MAX) (ESR)
= (4.4A) (0.013Ω) = 57mV
However, a 0A to 10A load step will cause an output
change of up to:
Δ V OUT(STEP) = Δ I LOAD (ESR) = (10A) (0.013Ω) = 130mV
An optional 22μF ceramic output capacitor is included
to minimize the effect of ESL in the output ripple. The
complete circuit is shown in Figure 6.
How to Reduce SW Ringing
As with any switching regulator, there will be voltage ring-
ing on the SW node, especially for high input voltages.
The ringing amplitude and duration is dependent on the
switching speed (gate drive), layout (parasitic inductance)
and MOSFET output capacitance. This ringing contributes
to the overall EMI, noise and high frequency ripple. One
way to reduce ringing is to optimize layout. A good layout
minimizes parasitic inductance. Adding RC snubbers from
SW to GND is also an effective way to reduce ringing. Finally,
adding a resistor in series with the BOOST pin will slow
down the MOSFET turn-on slew rate to dampen ringing,
but at the cost of reduced efficiency. Note that since the
IC is buffered from the high frequency transients by PCB
and bondwire inductances, the ringing by itself is normally
not a concern for controller reliability.
? ? 1 ? 28V ? ? = 0.86μH
L =
2.5V
( 550kHz ) ( 0.4 ) ( 12A )
? 2.5V ?
3610ff
  
相关PDF资料
PDF描述
SC2506-4R7 INDUCTOR SMD 4.7UH 1.60A 100KHZ
LT1076HVIR#TRPBF IC REG MULTI CONFIG ADJ 2A 7DD
SC2506-471 INDUCTOR SMD 470UH 0.14A 100KHZ
LT1076HVIR#TR IC REG MULTI CONFIG ADJ 2A 7DD
SC2506-470 INDUCTOR SMD 47UH 0.50A 100KHZ
相关代理商/技术参数
参数描述
LTC3610IWP#PBF 功能描述:IC REG BUCK SYNC ADJ 12A 64QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT
LTC3610IWP#TRPBF 功能描述:IC REG BUCK SYNC ADJ 12A 64QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT
LTC3611EWP#PBF 功能描述:IC REG BUCK SYNC ADJ 10A 64QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:250 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V 输入电压:2.05 V ~ 6 V PWM 型:电压模式 频率 - 开关:2MHz 电流 - 输出:500mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:6-UFDFN 包装:带卷 (TR) 供应商设备封装:6-SON(1.45x1) 产品目录页面:1032 (CN2011-ZH PDF) 其它名称:296-25628-2
LTC3611EWP#TRPBF 功能描述:IC REG BUCK SYNC ADJ 10A 64QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT
LTC3611IWP#PBF 功能描述:IC REG BUCK SYNC ADJ 10A 64QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT