参数资料
型号: LTC3613EWKH#PBF
厂商: Linear Technology
文件页数: 25/36页
文件大小: 0K
描述: IC REG BUCK SYNC ADJ 15A 56-QFN
标准包装: 40
类型: 降压(降压)
输出类型: 可调式
输出数: 1
输出电压: 0.6 V ~ 5.5 V
输入电压: 4.5 V ~ 24 V
PWM 型: 电流模式
频率 - 开关: 200kHz ~ 1MHz
电流 - 输出: 15A
同步整流器:
工作温度: -40°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 56-VFQFN 裸露焊盘
包装: 管件
供应商设备封装: 56-QFN 多焊盘(7x9)
LTC3613
APPLICATIONS INFORMATION
In some applications, a more severe transient can be caused
by switching in loads with large (>10μF) input capacitors.
If the switch connecting the load has low resistance and
is driven quickly, then the discharged input capacitors are
effectively put in parallel with C OUT , causing a rapid drop in
V OUT . No regulator can deliver enough current to prevent
this problem. The solution is to limit the turn-on speed of
the load switch driver. A Hot Swap? controller is designed
specifically for this purpose and usually incorporates cur-
rent limiting, short-circuit protection and soft starting.
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can
be expressed as:
%Efficiency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power. Although all dissipative elements in
the circuit produce losses, four main sources account for
most of the losses:
1. I 2 R losses. These arise from the resistances of the
MOSFETs, inductor and PC board traces and cause
the efficiency to drop at high output currents. In
continuous mode the average output current flows
though the inductor L, but is chopped between the
top and bottom MOSFETs.
2. Transition loss. This loss arises from the brief amount
of time the top MOSFET spends in the saturated region
during switch node transitions. It depends upon the
input voltage, load current, driver strength and MOSFET
capacitance, among other factors. The loss is significant
at input voltages above 20V.
3. INTV CC current. This is the sum of the MOSFET driver
and control currents. The MOSFET driver current re-
sults from switching the gate capacitance of the power
MOSFETs. Each time a MOSFET gate is switched from
low to high to low again, a packet of charge, dQ, moves
from INTV CC to ground. The resulting dQ/dt is a current
out of INTV CC that is typically much larger than the
controller I Q current.
Supplying INTV CC power through EXTV CC could save
several points of efficiency, especially for high V IN ap-
plications. Connecting EXTV CC to an output-derived
source will scale the V IN current required for the driver
and controller circuits by a factor of Duty Cycle/Effi-
ciency. For example, in a 20V to 5V application, 10mA
of INTV CC current results in approximately 2.5mA of V IN
current. This reduces the mid-current loss from 10%
or more (if the driver was powered directly from V IN )
to only a few percent.
4. C IN loss. The input capacitor has the difficult job of
filtering the large RMS input current to the regulator. It
must have a very low ESR to minimize the AC I 2 R loss
and sufficient capacitance to prevent the RMS current
from causing additional upstream losses in cabling,
fuses or batteries.
Other losses, which include the C OUT ESR loss, bottom
MOSFET reverse-recovery loss and inductor core loss
generally account for less than 2% additional loss.
When making adjustments to improve efficiency, the input
current is the best indicator of changes in efficiency. If you
make a change and the input current decreases, then the
efficiency has increased. If there is no change in input
current there is no change in efficiency.
Power losses in the switching regulator will reflect as a
longer than ideal on-time. This efficiency accounted on-
time in continuous mode can be calculated as:
t ON(REAL) ≈
t ON(IDEAL)
Efficiency
3613fa
25
相关PDF资料
PDF描述
LTC3614IUDD#TRPBF IC REG BUCK SYNC ADJ 4A 24QFN
LTC3615EFE#PBF IC REG BUCK SYNC ADJ 3A 24TSSOP
LTC3616IUDD#TRPBF IC REG BUCK SYNC ADJ 6A 24QFN
LTC3617IUDD#TRPBF IC REG SYNC 6A BUCK 24QFN
LTC3618EFE#PBF IC REG DUAL SYNC 3A BUCK 24TSSOP
相关代理商/技术参数
参数描述
LTC3613IWKH#PBF 功能描述:IC REG BUCK SYNC ADJ 15A 56QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT
LTC3613IWKH#TRPBF 功能描述:IC REG BUCK SYNC ADJ 15A 56QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT
LTC3614EUDD#PBF 功能描述:IC REG BUCK SYNC ADJ 4A 24QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:250 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V 输入电压:2.05 V ~ 6 V PWM 型:电压模式 频率 - 开关:2MHz 电流 - 输出:500mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:6-UFDFN 包装:带卷 (TR) 供应商设备封装:6-SON(1.45x1) 产品目录页面:1032 (CN2011-ZH PDF) 其它名称:296-25628-2
LTC3614EUDD#TRPBF 功能描述:IC REG BUCK SYNC ADJ 4A 24QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:2,500 系列:- 类型:降压(降压) 输出类型:固定 输出数:1 输出电压:1.2V,1.5V,1.8V,2.5V 输入电压:2.7 V ~ 20 V PWM 型:- 频率 - 开关:- 电流 - 输出:50mA 同步整流器:是 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:10-TFSOP,10-MSOP(0.118",3.00mm 宽)裸露焊盘 包装:带卷 (TR) 供应商设备封装:10-MSOP 裸露焊盘
LTC3614IUDD#PBF 功能描述:IC REG BUCK SYNC ADJ 4A 24QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 设计资源:Design Support Tool 标准包装:1 系列:- 类型:升压(升压) 输出类型:固定 输出数:1 输出电压:3V 输入电压:0.75 V ~ 2 V PWM 型:- 频率 - 开关:- 电流 - 输出:100mA 同步整流器:是 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-5 细型,TSOT-23-5 包装:剪切带 (CT) 供应商设备封装:TSOT-23-5 其它名称:AS1323-BTTT-30CT