参数资料
型号: LTC3727AIG-1#TR
厂商: LINEAR TECHNOLOGY CORP
元件分类: 稳压器
英文描述: 3 A SWITCHING CONTROLLER, 580 kHz SWITCHING FREQ-MAX, PDSO28
封装: 5.30 MM, PLASTIC, SSOP-28
文件页数: 16/32页
文件大小: 328K
代理商: LTC3727AIG-1#TR
LTC3727A-1
23
3727a1fa
adequate charge storage and very low ESR at the switching
frequency. A 25W supply will typically require a minimum
of 22μF to 47μF of capacitance having a maximum of 20mΩ
to 50mΩ of ESR. The LTC3727A-1 2-phase architecture
typically halves this input capacitance requirement over
competing solutions. Other losses, including Schottky
diode conduction losses during dead-time and inductor
core losses, generally account for less than 2% total
additional loss.
Checking Transient Response
The regulator loop response can be checked by looking at
the load current transient response. Switching regulators
take several cycles to respond to a step in DC (resistive)
load current. When a load step occurs, VOUT shifts by an
amount equal to
ΔILOAD (ESR), where ESR is the effective
series resistance of COUT. ΔILOAD also begins to charge or
discharge COUT generating the feedback error signal that
forces the regulator to adapt to the current change and
return VOUT to its steady-state value. During this recov-
ery time VOUT can be monitored for excessive overshoot
or ringing, which would indicate a stability problem.
OPTI-LOOP compensation allows the transient response
to be optimized over a wide range of output capacitance
and ESR values. The availability of the ITH pin not only
allows optimization of control loop behavior but also pro-
vides a DC coupled and AC ltered closed loop response
test point. The DC step, rise time and settling at this test
point truly reects the closed loop response. Assuming a
predominantly second order system, phase margin and/or
damping factor can be estimated using the percentage of
overshoot seen at this pin. The bandwidth can also be esti-
mated by examining the rise time at the pin. The ITH external
components shown in the Figure 1 circuit will provide an
adequate starting point for most applications.
The ITH series RC-CC lter sets the dominant pole-zero
loop compensation. The values can be modied slightly
(from 0.5 to 2 times their suggested values) to optimize
transient response once the nal PC layout is done and
the particular output capacitor type and value have been
determined. The output capacitors need to be selected
because the various types and values determine the loop
APPLICATIONS INFORMATION
gain and phase. An output current pulse of 20% to 80%
of full-load current having a rise time of 1μs to 10μs will
produce output voltage and ITH pin waveforms that will
give a sense of the overall loop stability without breaking
the feedback loop. Placing a power MOSFET directly
across the output capacitor and driving the gate with an
appropriate signal generator is a practical way to produce
a realistic load step condition. The initial output voltage
step resulting from the step change in output current may
not be within the bandwidth of the feedback loop, so this
signal cannot be used to determine phase margin. This is
why it is better to look at the ITH pin signal which is in the
feedback loop and is the ltered and compensated control
loop response. The gain of the loop will be increased
by increasing RC and the bandwidth of the loop will be
increased by decreasing CC. If RC is increased by the same
factor that CC is decreased, the zero frequency will be kept
the same, thereby keeping the phase shift the same in the
most critical frequency range of the feedback loop. The
output voltage settling behavior is related to the stability
of the closed-loop system and will demonstrate the actual
overall supply performance.
A second, more severe transient is caused by switching
in loads with large (>1μF) supply bypass capacitors. The
discharged bypass capacitors are effectively put in parallel
with COUT, causing a rapid drop in VOUT. No regulator can
alter its delivery of current quickly enough to prevent this
sudden step change in output voltage if the load switch
resistance is low and it is driven quickly. If the ratio of
CLOAD to COUT is greater than 1:50, the switch rise time
should be controlled so that the load rise time is limited
to approximately 25 CLOAD. Thus a 10μF capacitor would
require a 250μs rise time, limiting the charging current
to about 200mA.
Automotive Considerations: Plugging into the
Cigarette Lighter
As battery-powered devices go mobile, there is a natural
interest in plugging into the cigarette lighter in order to
conserve or even recharge battery packs during operation.
But before you connect, be advised: you are plugging
into the supply from Hell. The main power line in an
相关PDF资料
PDF描述
LTC3727AIG-1#TRPBF 3 A SWITCHING CONTROLLER, 580 kHz SWITCHING FREQ-MAX, PDSO28
LTC3727AIG-1#PBF 3 A SWITCHING CONTROLLER, 580 kHz SWITCHING FREQ-MAX, PDSO28
LTC3736-2EUF#PBF SWITCHING CONTROLLER, PDSO24
LTC3736-2EUF#TRPBF SWITCHING CONTROLLER, PQCC24
LTC3736-2EGN#PBF SWITCHING CONTROLLER, PDSO24
相关代理商/技术参数
参数描述
LTC3727EG 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3727EG#PBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3727EG#TR 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3727EG#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3727EG-1 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX