参数资料
型号: LTC3788EUH#PBF
厂商: LINEAR TECHNOLOGY CORP
元件分类: 稳压器
英文描述: DUAL SWITCHING CONTROLLER, 900 kHz SWITCHING FREQ-MAX, PQCC32
封装: 5 X 5 MM, LEAD FREE, PLASTIC, MO-220WHHD, QFN-32
文件页数: 10/32页
文件大小: 386K
代理商: LTC3788EUH#PBF
LTC3788
18
3788fb
applicaTions inForMaTion
specification for the MOSFETs as well; many of the logic
level MOSFETs are limited to 30V or less.
Selection criteria for the power MOSFETs include the
on-resistance RDS(ON), Miller capacitance CMILLER, input
voltage and maximum output current. Miller capacitance,
CMILLER, can be approximated from the gate charge curve
usually provided on the MOSFET manufacturer’s data
sheet. CMILLER is equal to the increase in gate charge
along the horizontal axis while the curve is approximately
flat divided by the specified change in VDS. This result is
then multiplied by the ratio of the application applied VDS
to the gate charge curve specified VDS. When the IC is
operating in continuous mode, the duty cycles for the top
and bottom MOSFETs are given by:
Main SwitchDuty Cycle
=
VOUT VIN
VOUT
Synchronous SwitchDuty Cycle
=
VIN
VOUT
The MOSFET power dissipations at maximum output
current are given by:
PMAIN =
(VOUT VIN)VOUT
V 2
IN
IOUT(MAX)
2 1+ d
(
)
RDS(ON) + k V
3
OUT
IOUT(MAX)
VIN
RDR
CMILLER f
PSYNC =
VIN
VOUT
IOUT(MAX)
2 1+ d
(
)RDS(ON)
where
d is the temperature dependency of RDS(ON) and
RDR (approximately 1Ω) is the effective driver resistance
at the MOSFET’s Miller threshold voltage. The constant k,
which accounts for the loss caused by reverse recovery
current, is inversely proportional to the gate drive current
and has an empirical value of 1.7.
BothMOSFETshaveI2RlosseswhilethebottomN-channel
equation includes an additional term for transition losses,
which are highest at low input voltages. For high VIN the
high current efficiency generally improves with larger
MOSFETs, while for low VIN the transition losses rapidly
increase to the point that the use of a higher RDS(ON)device
with lower CMILLERactuallyprovideshigherefficiency.The
synchronous MOSFET losses are greatest at high input
voltage when the bottom switch duty factor is low or dur-
ing overvoltage when the synchronous switch is on close
to 100% of the period.
The term (1+
d) is generally given for a MOSFET in the
form of a normalized RDS(ON) vs Temperature curve, but
d = 0.005/°C can be used as an approximation for low
voltage MOSFETs.
CIN and COUT Selection
The input ripple current in a boost converter is relatively
low(comparedwiththeoutputripplecurrent),becausethis
currentiscontinuous.TheinputcapacitorCINvoltagerating
should comfortably exceed the maximum input voltage.
Although ceramic capacitors can be relatively tolerant of
overvoltage conditions, aluminum electrolytic capacitors
are not. Be sure to characterize the input voltage for any
possible overvoltage transients that could apply excess
stress to the input capacitors.
The value of the CIN is a function of the source impedance,
andingeneral,thehigherthesourceimpedance,thehigher
the required input capacitance. The required amount of
input capacitance is also greatly affected by the duty cycle.
High output current applications that also experience high
duty cycles can place great demands on the input supply,
both in terms of DC current and ripple current.
Inaboostconverter,theoutputhasadiscontinuouscurrent,
so COUT must be capable of reducing the output voltage
ripple. The effects of ESR (equivalent series resistance)
and the bulk capacitance must be considered when choos-
ing the right capacitor for a given output ripple voltage.
The steady ripple voltage due to charging and discharging
the bulk capacitance is given by:
VRIPPLE =
IOUT(MAX) (VOUT VIN(MIN))
COUT VOUT f
V
where COUT is the output filter capacitor.
The steady ripple due to the voltage drop across the ESR
is given by:
VESR = IL(MAX) ESR
相关PDF资料
PDF描述
LTC3788IUH#PBF DUAL SWITCHING CONTROLLER, 900 kHz SWITCHING FREQ-MAX, PQCC32
LTC3788IGN-1#PBF DUAL SWITCHING CONTROLLER, 900 kHz SWITCHING FREQ-MAX, PDSO28
LTC3788EGN-1#TRPBF DUAL SWITCHING CONTROLLER, 900 kHz SWITCHING FREQ-MAX, PDSO28
LTC3789EGN#TRPBF 0.1 A SWITCHING CONTROLLER, 710 kHz SWITCHING FREQ-MAX, PDSO28
LTC3789EUFD#TRPBF 0.1 A SWITCHING CONTROLLER, 710 kHz SWITCHING FREQ-MAX, PQCC28
相关代理商/技术参数
参数描述
LTC3788IGN-1#PBF 功能描述:IC REG CTRLR BST PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3788IGN-1#TRPBF 功能描述:IC REG CTRLR BST PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3788IUH#PBF 功能描述:IC REG CTRLR BST PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3788IUH#TRPBF 功能描述:IC REG CTRLR BST PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3789EGN#PBF 功能描述:IC REG CTRLR BST PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX