参数资料
型号: LTC3827IUH
厂商: LINEAR TECHNOLOGY CORP
元件分类: 稳压器
英文描述: 3 A DUAL SWITCHING CONTROLLER, 580 kHz SWITCHING FREQ-MAX, PQCC32
封装: 5 X 5 MM, PLASTIC, MO-220WHHD, QFN-32
文件页数: 17/36页
文件大小: 451K
代理商: LTC3827IUH
LTC3827
24
3827ff
APPLICATIONS INFORMATION
If the duty cycle falls below what can be accommodated
by the minimum on-time, the controller will begin to skip
cycles. The output voltage will continue to be regulated,
but the ripple voltage and current will increase.
The minimum on-time for the LTC3827 is approximately
180ns. However, as the peak sense voltage decreases
the minimum on-time gradually increases up to about
200ns. This is of particular concern in forced continuous
applications with low ripple current at light loads. If the
duty cycle drops below the minimum on-time limit in this
situation, a signicant amount of cycle skipping can occur
with correspondingly larger current and voltage ripple.
Efciency Considerations
The percent efciency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efciency and which change would
produce the most improvement. Percent efciency can
be expressed as:
%Efciency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of the
losses in LTC3827 circuits: 1) IC VIN current, 2) INTVCC
regulator current, 3) I2R losses, 4) Topside MOSFET
transition losses.
1. The VIN current has two components: the rst is the
DC supply current given in the Electrical Characteristics
table, which excludes MOSFET driver and control cur-
rents; the second is the current drawn from the 3.3V
linear regulator output. VIN current typically results in
a small (<0.1%) loss.
2. INTVCC current is the sum of the MOSFET driver and
control currents. The MOSFET driver current results
from switching the gate capacitance of the power
MOSFETs. Each time a MOSFET gate is switched from
low to high to low again, a packet of charge dQ moves
from INTVCC to ground. The resulting dQ/dt is a cur-
rent out of INTVCC that is typically much larger than the
control circuit current. In continuous mode, IGATECHG
= f(QT + QB), where QT and QB are the gate charges of
the topside and bottom side MOSFETs.
Supplying INTVCC power through the EXTVCC switch
input from an output-derived source will scale the VIN
current required for the driver and control circuits by
a factor of (Duty Cycle)/(Efciency). For example, in a
20V to 5V application, 10mA of INTVCC current results
in approximately 2.5mA of VIN current. This reduces the
mid-current loss from 10% or more (if the driver was
powered directly from VIN) to only a few percent.
3. I2R losses are predicted from the DC resistances of the
fuse (if used), MOSFET, inductor, current sense resis-
tor, and input and output capacitor ESR. In continuous
mode the average output current ows through L and
RSENSE, but is “chopped” between the topside MOSFET
and the synchronous MOSFET. If the two MOSFETs have
approximately the same RDS(ON), then the resistance
of one MOSFET can simply be summed with the resis-
tances of L, RSENSE and ESR to obtain I2R losses. For
example, if each RDS(ON) = 30mΩ, RL = 50mΩ, RSENSE
= 10mΩ and RESR = 40mΩ (sum of both input and
output capacitance losses), then the total resistance
is 130mΩ. This results in losses ranging from 3% to
13% as the output current increases from 1A to 5A for
a 5V output, or a 4% to 20% loss for a 3.3V output.
Efciency varies as the inverse square of VOUT for the
same external components and output power level. The
combined effects of increasingly lower output voltages
and higher currents required by high performance digital
systems is not doubling but quadrupling the importance
of loss terms in the switching regulator system!
相关PDF资料
PDF描述
LTC3827IUH#TR 3 A DUAL SWITCHING CONTROLLER, 580 kHz SWITCHING FREQ-MAX, PQCC32
LTC4010EFE 0.2 A BATTERY CHARGE CONTROLLER, 640 kHz SWITCHING FREQ-MAX, PDSO16
LTC4065LXEDC#PBF 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6
LTC4065LXEDC#TRM 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6
LTC4065LEDC#PBF 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6
相关代理商/技术参数
参数描述
LTC3827IUH#PBF 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3827IUH#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3828EG#PBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)
LTC3828EG#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3828EUH 制造商:Linear Technology 功能描述:DC DC Cntrlr Dual-OUT Sync Step Down 4.5V to 28V Input 32-Pin QFN EP