参数资料
型号: LTC3890IUH#PBF
厂商: LINEAR TECHNOLOGY CORP
元件分类: 稳压器
英文描述: DUAL SWITCHING CONTROLLER, 585 kHz SWITCHING FREQ-MAX, PQCC32
封装: 5 X 5 MM, 0.75 MM HEIGHT, LEAD FREE, PLASTIC, MO-220WHHD, QFN-32
文件页数: 19/38页
文件大小: 381K
代理商: LTC3890IUH#PBF
LTC3890
26
3890fa
APPLICATIONS INFORMATION
Checking Transient Response
The regulator loop response can be checked by looking at
the load current transient response. Switching regulators
take several cycles to respond to a step in DC (resistive)
load current. When a load step occurs, VOUT shifts by an
amount equal to ΔILOAD (ESR), where ESR is the effective
series resistance of COUT. ΔILOAD also begins to charge or
discharge COUT generating the feedback error signal that
forces the regulator to adapt to the current change and
return VOUT to its steady-state value. During this recov-
ery time VOUT can be monitored for excessive overshoot
or ringing, which would indicate a stability problem.
OPTI-LOOP compensation allows the transient response
to be optimized over a wide range of output capacitance
and ESR values. The availability of the ITH pin not only
allows optimization of control loop behavior, but it also
provides a DC coupled and AC filtered closed-loop response
test point. The DC step, rise time and settling at this test
point truly reflects the closed-loop response. Assuming a
predominantly second order system, phase margin and/
or damping factor can be estimated using the percentage
of overshoot seen at this pin. The bandwidth can also
be estimated by examining the rise time at the pin. The
ITH external components shown in Figure 13 circuit will
provide an adequate starting point for most applications.
The ITH series RC-CC filter sets the dominant pole-zero
loop compensation. The values can be modified slightly
(from 0.5 to 2 times their suggested values) to optimize
transient response once the final PC layout is done and
the particular output capacitor type and value have been
determined. The output capacitors need to be selected
because the various types and values determine the loop
gain and phase. An output current pulse of 20% to 80%
of full-load current having a rise time of 1μs to 10μs will
produce output voltage and ITH pin waveforms that will
give a sense of the overall loop stability without breaking
the feedback loop.
Placing a power MOSFET directly across the output ca-
pacitor and driving the gate with an appropriate signal
generator is a practical way to produce a realistic load step
condition. The initial output voltage step resulting from
the step change in output current may not be within the
bandwidth of the feedback loop, so this signal cannot be
used to determine phase margin. This is why it is better
to look at the ITH pin signal which is in the feedback loop
and is the filtered and compensated control loop response.
The gain of the loop will be increased by increasing RC
and the bandwidth of the loop will be increased by de-
creasing CC. If RC is increased by the same factor that CC
is decreased, the zero frequency will be kept the same,
thereby keeping the phase shift the same in the most
critical frequency range of the feedback loop. The output
voltage settling behavior is related to the stability of the
closed-loop system and will demonstrate the actual overall
supply performance.
A second, more severe transient is caused by switching
in loads with large (>1μF) supply bypass capacitors. The
discharged bypass capacitors are effectively put in parallel
with COUT, causing a rapid drop in VOUT. No regulator can
alter its delivery of current quickly enough to prevent this
sudden step change in output voltage if the load switch
resistance is low and it is driven quickly. If the ratio of
CLOAD to COUT is greater than 1:50, the switch rise time
should be controlled so that the load rise time is limited
to approximately 25 CLOAD. Thus a 10μF capacitor would
require a 250μs rise time, limiting the charging current
to about 200mA.
相关PDF资料
PDF描述
LTC3615IFE-1#TRPBF SWITCHING REGULATOR, PDSO24
LTC3529EDCB#TRMPBF SWITCHING CONTROLLER, 1800 kHz SWITCHING FREQ-MAX, PDSO8
LM1001-7ERV0H 1-OUTPUT 50 W AC-DC REG PWR SUPPLY MODULE
LM1001-7ERV3AF 1-OUTPUT 50 W AC-DC REG PWR SUPPLY MODULE
LM1001-7PD4 1-OUTPUT 50 W AC-DC REG PWR SUPPLY MODULE
相关代理商/技术参数
参数描述
LTC3890MPGN-1#PBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3890MPGN-1#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3890MPGN-3#PBF 制造商:Linear Technology 功能描述:IC REG CTRLR BUCK PWM CM 28SSOP 制造商:Linear Technology 功能描述:DC-DC CONTROLLER BUCK 900KHZ 制造商:Linear Technology 功能描述:DC-DC CONTROLLER, BUCK, 900KHZ, SSOP-28 制造商:Linear Technology 功能描述:DC-DC CONTROLLER, BUCK, 900KHZ, SSOP-28; Primary Input Voltage:60V; No. of Outputs:2; No. of Pins:28; Operating Temperature Min:-55C; Operating Temperature Max:150C; Operating Temperature Range:-55C to +150C ;RoHS Compliant: Yes
LTC3890MPGN-3#TRPBF 制造商:Linear Technology 功能描述:IC REG CTRLR BUCK PWM CM 28SSOP
LTC3890MPUH#PBF 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX