参数资料
型号: LTC3891MPUDC#PBF
厂商: Linear Technology
文件页数: 26/32页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 20-QFN
标准包装: 91
PWM 型: 电流模式
输出数: 1
频率 - 最大: 835kHz
占空比: 99%
电源电压: 4 V ~ 60 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -55°C ~ 150°C
封装/外壳: 20-WFQFN 裸露焊盘
包装: 管件
LTC3891
APPLICATIONS INFORMATION
3. Are the SENSE – and SENSE + leads routed together with
minimum PC trace spacing? The filter capacitor between
SENSE + and SENSE – should be as close as possible
to the IC. Ensure accurate current sensing with Kelvin
connections at the SENSE resistor.
4. Is the INTV CC decoupling capacitor connected close
to the IC, between the INTV CC and the power ground
pins? This capacitor carries the MOSFET drivers’ cur-
rent peaks. An additional 1μF ceramic capacitor placed
immediately next to the INTV CC and PGND pins can help
improve noise performance substantially.
5. Keep the SW, TG, and BOOST nodes away from sensitive
small-signal nodes. All of these nodes have very large
and fast moving signals and therefore should be kept
on the output side of the LTC3891 and occupy minimum
PC trace area.
6. Use a modified star ground technique: a low impedance,
large copper area central grounding point on the same
side of the PC board as the input and output capacitors
with tie-ins for the bottom of the INTV CC decoupling
capacitor, the bottom of the voltage feedback resistive
divider and the SGND pin of the IC.
PC Board Layout Debugging
It is helpful to use a DC-50MHz current probe to monitor
the current in the inductor while testing the circuit. Monitor
the output switching node (SW pin) to synchronize the
oscilloscope to the internal oscillator and probe the actual
output voltage as well. Check for proper performance over
the operating voltage and current range expected in the
application. The frequency of operation should be main-
tained over the input voltage range down to dropout and
until the output load drops below the low current opera-
tion threshold—typically 25% of the maximum designed
current level in Burst Mode operation.
gest noise pickup at the current or voltage sensing inputs
or inadequate loop compensation. Overcompensation of
the loop can be used to tame a poor PC layout if regulator
bandwidth optimization is not required.
Reduce V IN from its nominal level to verify operation
of the regulator in dropout. Check the operation of the
undervoltage lockout circuit by further lowering V IN while
monitoring the outputs to verify operation.
Investigate whether any problems exist only at higher out-
put currents or only at higher input voltages. If problems
coincide with high input voltages and low output currents,
look for capacitive coupling between the BOOST, SW, TG,
and possibly BG connections and the sensitive voltage
and current pins. The capacitor placed across the current
sensing pins needs to be placed immediately adjacent to
the pins of the IC. This capacitor helps to minimize the
effects of differential noise injection due to high frequency
capacitive coupling. If problems are encountered with
high current output loading at lower input voltages, look
for inductive coupling between C IN , Schottky and the top
MOSFET components to the sensitive current and voltage
sensing traces. In addition, investigate common ground
path voltage pickup between these components and the
SGND pin of the IC.
An embarrassing problem, which can be missed in an
otherwise properly working switching regulator, results
when the current sensing leads are hooked up backwards.
The output voltage under this improper hookup will still
be maintained but the advantages of current mode control
will not be realized. Compensation of the voltage loop will
be much more sensitive to component selection. This
behavior can be investigated by temporarily shorting out
the current sensing resistor—don’t worry, the regulator
will still maintain control of the output voltage.
The duty cycle percentage should be maintained from cycle
to cycle in a well-designed, low noise PCB implementation.
Variation in the duty cycle at a subharmonic rate can sug-
3891fa
26
相关PDF资料
PDF描述
RBM28DCMT CONN EDGECARD 56POS .156 WW
GCM36DSXS CONN EDGECARD 72POS DIP .156 SLD
NCP305LSQ20T1G IC VOLT DETECT OD 2.0V SC-82AB
GCM28DSEI CONN EDGECARD 56POS .156 EYELET
VE-JT3-EY-F4 CONVERTER MOD DC/DC 24V 50W
相关代理商/技术参数
参数描述
LTC3900ES8 功能描述:IC DRIVER RECT SYNC CONV 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:5 系列:- 配置:低端 输入类型:非反相 延迟时间:600ns 电流 - 峰:12A 配置数:1 输出数:1 高端电压 - 最大(自引导启动):- 电源电压:14.2 V ~ 15.8 V 工作温度:-20°C ~ 60°C 安装类型:通孔 封装/外壳:21-SIP 模块 供应商设备封装:模块 包装:散装 配用:BG2A-NF-ND - KIT DEV BOARD FOR IGBT 其它名称:835-1063
LTC3900ES8#PBF 功能描述:IC DRIVER RECT SYNC CONV 8SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:5 系列:- 配置:低端 输入类型:非反相 延迟时间:600ns 电流 - 峰:12A 配置数:1 输出数:1 高端电压 - 最大(自引导启动):- 电源电压:14.2 V ~ 15.8 V 工作温度:-20°C ~ 60°C 安装类型:通孔 封装/外壳:21-SIP 模块 供应商设备封装:模块 包装:散装 配用:BG2A-NF-ND - KIT DEV BOARD FOR IGBT 其它名称:835-1063
LTC3900ES8#TR 功能描述:IC DRIVER RECT SYNC CONV 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:5 系列:- 配置:低端 输入类型:非反相 延迟时间:600ns 电流 - 峰:12A 配置数:1 输出数:1 高端电压 - 最大(自引导启动):- 电源电压:14.2 V ~ 15.8 V 工作温度:-20°C ~ 60°C 安装类型:通孔 封装/外壳:21-SIP 模块 供应商设备封装:模块 包装:散装 配用:BG2A-NF-ND - KIT DEV BOARD FOR IGBT 其它名称:835-1063
LTC3900ES8#TRPBF 功能描述:IC DRIVER RECT SYNC CONV 8SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:5 系列:- 配置:低端 输入类型:非反相 延迟时间:600ns 电流 - 峰:12A 配置数:1 输出数:1 高端电压 - 最大(自引导启动):- 电源电压:14.2 V ~ 15.8 V 工作温度:-20°C ~ 60°C 安装类型:通孔 封装/外壳:21-SIP 模块 供应商设备封装:模块 包装:散装 配用:BG2A-NF-ND - KIT DEV BOARD FOR IGBT 其它名称:835-1063
LTC3900HS8#PBF 功能描述:IC DRIVER RECT SYNC CONV 8SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:5 系列:- 配置:低端 输入类型:非反相 延迟时间:600ns 电流 - 峰:12A 配置数:1 输出数:1 高端电压 - 最大(自引导启动):- 电源电压:14.2 V ~ 15.8 V 工作温度:-20°C ~ 60°C 安装类型:通孔 封装/外壳:21-SIP 模块 供应商设备封装:模块 包装:散装 配用:BG2A-NF-ND - KIT DEV BOARD FOR IGBT 其它名称:835-1063