参数资料
型号: MAX15034BAUI+
厂商: Maxim Integrated Products
文件页数: 14/26页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM 28TSSOP-EP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 50
PWM 型: 电流模式
输出数: 1 或 2
频率 - 最大: 1MHz
电源电压: 4.75 V ~ 5.5 V,5 V ~ 28 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 125°C
封装/外壳: 28-SOIC(0.173",4.40mm 宽)裸露焊盘
包装: 管件
Configurable, Single-/Dual-Output, Synchronous
Buck Controller for High-Current Applications
V OUT ( FL ) = 0 . 6125 × ? 1 + 1 ? ? ? V OUT
R F = OUT SENSE
V OUT ( NL ) = 0 . 6125 × ? 1 + 1 ?
The outer voltage control loop consists of the voltage-
error amplifier (VEA1). The noninverting input (EAN1) is
externally connected to the midpoint of a resistive volt-
age-divider from OUT1 to EAN1 to AGND. The voltage
loop gain is set by using an external resistor from the
output of this amplifier (EAOUT1) to its inverting input
(EAN1). The noninverting input of (VEA1) is connected
to the 0.61V internal reference.
Current-Error Amplifier
The MAX15034 features two dedicated transconduc-
tance current-error amplifiers CEA1 and CEA2 with a
typical g m of 550μS and 320μA output sink and source
capability. The current-error amplifier outputs (CLP1 and
CLP2) serve as the inverting input to the PWM compara-
tors. CLP1 and CLP2 are externally accessible to pro-
vide frequency compensation for the inner current loops
(see C CFF , C CF , and R CF in Figure 2). Compensate the
current-error amplifier so that the inductor current down
slope, which becomes the up slope at the inverting
input of the PWM comparator, is less than the slope of
the internally generated voltage ramp (see the
Compensation section).
PWM Comparator and R-S Flip-Flop
The PWM comparator (CPWM1 or CPWM2) sets the
duty cycle for each cycle by comparing the current-
error amplifier output to a 2V P-P ramp. At the start of
each clock cycle an R-S flip-flop resets and the high-
side drivers (DH1 and DH2) turn on. The comparator
sets the flip-flop as soon as the ramp voltage exceeds
the current-error amplifier output voltage, thus terminat-
ing the on-cycle.
Voltage-Error Amplifier
The voltage-error amplifier (VEA_) sets the gain of the
voltage control loop. Its output clamps to 1.14V and
-0.234V relative to V CM = 0.61V. Set the MAX15034 out-
put voltage by connecting a voltage-divider from the
output to EAN_ to GND (see Figure 4). At no load, the
output of the voltage error amplifier is zero.
Use the equation below to calculate the no load voltage:
? R ?
? R 2 ?
The voltage at full load is given by:
? R ?
? R 2 ?
where ? V OUT is the voltage-positioning window
described in the Adaptive Voltage Positioning section.
Adaptive Voltage Positioning
Powering new-generation ICs requires new techniques
to reduce cost, size, and power dissipation. Voltage
positioning (Figure 5) reduces the total number of out-
put capacitors to meet a given transient response
requirement. Setting the no-load output voltage slightly
higher than the output voltage during nominally loaded
conditions allows a larger downward voltage excursion
when the output current suddenly increases.
Regulating at a lower output voltage under a heavy
load allows a larger upward-voltage excursion when
the output current suddenly decreases. A larger
allowed voltage-step excursion reduces the required
number of output capacitors and/or allows the use of
higher ESR capacitors.
The MAX15034 internal 0.6125V reference provides a
tolerance of ±1.25%. Using 0.1% resistors for R1 and
R2 allows a 4% variation from the nominal output volt-
age. This available voltage range allows the reduction
of the total number of output capacitors to meet a given
transient response requirement resulting in a voltage-
positioning window as shown in Figure 5.
From the allowable voltage-positioning window calcu-
late the value of R F from the equation below.
I × R × 36 × R 1
? V OUT
where ? V OUT is the allowable voltage-positioning win-
dow, R SENSE is the sense resistor, 36 is the current-
sense amplifier gain, and R 1 is as shown in Figure 4.
14
______________________________________________________________________________________
相关PDF资料
PDF描述
MAX1631AEAI+ IC REG CTRLR BUCK PWM CM 28-SSOP
MAX1634EAI+ IC REG CTRLR BUCK PWM CM 28-SSOP
MAX15003ATM+ IC REG CTRLR BUCK PWM 48TQFN-EP
MAX5060ETI+ IC REG CTRLR BUCK PWM CM 28-TQFN
MAX1541ETL+ IC REG CTRLR DIVIDER PWM 40-TQFN
相关代理商/技术参数
参数描述
MAX15034BAUI+ 功能描述:DC/DC 开关控制器 Configurable Synchronous Buck RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX15034BAUI+T 功能描述:DC/DC 开关控制器 Configurable Synchronous Buck RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX15034BEVKIT+ 功能描述:电源管理IC开发工具 MAX15034B Eval Kit RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
MAX15035ETL+ 功能描述:电压模式 PWM 控制器 15A Step-Down Reg w/Internal Switch RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX15035ETL+T 功能描述:电压模式 PWM 控制器 15A Step-Down Reg w/Internal Switch RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel