参数资料
型号: MAX15037ATE/V+
厂商: Maxim Integrated Products
文件页数: 14/25页
文件大小: 0K
描述: IC REG BUCK BST SYNC ADJ 16WQFN
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 60
类型: 降压(降压),升压(升压)
输出类型: 可调式
输出数: 1
输出电压: 0.6 V ~ 23 V
输入电压: 4.5 V ~ 23 V
PWM 型: 电压模式
频率 - 开关: 312kHz ~ 2.1MHz
电流 - 输出: 3A
同步整流器:
工作温度: -40°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 16-WQFN 裸露焊盘
包装: 管件
供应商设备封装: 16-TQFN-EP(5x5)
2.2MHz, 3A Buck or Boost Converters
with an Integrated High-Side Switch
V IN _ MIN = OUT DROP 1 + V DROP 2 ? V DROP 1
L = OUT IN OUT
Effective Input Voltage Range
The MAX15036/MAX15037 can operate with input sup-
plies ranging from 4.5V to 5.5V or 5.5V to 23V. The
input voltage range (V+) can be constrained to a mini-
mum by the duty-cycle limitations and to a maximum by
the on-time limitation. The minimum input voltage is
determined by:
V + V
D MAX
D MAX is the maximum duty cycle of 87.5% (typ).
V DROP1 is the total drop in the inductor discharge path
that includes the diode’s forward voltage drop (or the
drop across the synchronous rectifier MOSFET), and
the drops across the series resistance of the inductor
and PCB traces. V DROP2 is the total drop in the induc-
tors charging path, which includes the drop across the
internal power MOSFET, and the drops across the
series resistance of the inductor and PCB traces.
The maximum input voltage can be determined by:
tance is a function of operating frequency, input-to-out-
put voltage differential, and the peak-to-peak inductor
current ( Δ I P-P ). Higher Δ I P-P allows for a lower inductor
value, while a lower Δ I P-P requires a higher inductor
value. A lower inductor value minimizes size and cost,
improves large-signal and transient response, but
reduces efficiency due to higher peak currents and
higher peak-to-peak output voltage ripple for the same
output capacitor. On the other hand, higher inductance
increases efficiency by reducing the ripple current.
Resistive losses due to extra wire turns can exceed the
benefit gained from lower ripple current levels especial-
ly when the inductance is increased without also allow-
ing for larger inductor dimensions. A good compromise
is to choose Δ I P-P equal to 30% of the full load current.
Use the following equation to calculate the inductance:
V   (V ? V   )
V I N × f SW × Δ I P ? P
V IN and V OUT are typical values so that efficiency is
optimum for typical conditions. The switching frequency
V IN _ MAX =
V OUT
t ON _ MIN × f SW
is set by R OSC (see the Setting the Switching Frequency
section). The peak-to-peak inductor current, which
reflects the peak-to-peak output ripple, is worse at the
R 1 = R 2 × ? OUT ? 1 ?
where t ON_MIN = 100ns and f SW is the switching frequency.
Setting the Output Voltage
For 0.6V or greater output voltages, connect a resistive
divider from V OUT to FB to SGND. Select the FB to
SGND resistor (R2) from 1k Ω to 10k Ω and calculate the
resistor from OUT to FB (R1) by the following equation:
? V ?
? V FB ?
where V FB = 0.6V, see Figure 3.
For designs that use a Type III compensation scheme,
first calculate R1 for stability requirements (see the
Compensation section) then choose R2 so that:
maximum input voltage. See the Output Capacitor
Selection section to verify that the worst-case output rip-
ple is acceptable. The inductor saturation current is also
important to avoid runaway current during continuous
output short-circuit. At high input-to-output differential,
and high switching frequency, the on-time drops to the
order of 100ns. Though the MAX15036/MAX15037 can
control the on-time as low as 100ns, the internal current-
limit circuit may not detect the overcurrent within this
time. In that case, the output current during the fault
may exceed the current limit specified in the Electrical
Characteristics table. The overtemperature shutdown
protects the MAX15036/MAX15037 against the output
short-circuit fault. However, the output current may
reach 5.6A. Choose an inductor with a saturation current
of greater than 5.6A when the minimum on-time for a
R 2 =
R 1 × V FB
V OUT ? V FB
given frequency and duty cycle is less than 200ns.
Input Capacitors
The discontinuous input current of the buck converter
See Figure 4.
Inductor Selection
Three key inductor parameters must be specified for
operation with the MAX15036/MAX15037: inductance
value (L), peak inductor current (I PEAK ), and inductor
saturation current (I SAT ). The minimum required induc-
causes large input ripple current. The switching frequen-
cy, peak inductor current, and the allowable peak-to-
peak input voltage ripple dictate the input capacitance
requirement. Increasing the switching frequency or the
inductor value lowers the peak-to-average current ratio
yielding a lower input capacitance requirement.
14
______________________________________________________________________________________
相关PDF资料
PDF描述
GEC36DRYH-S734 CONN EDGECARD 72POS DIP .100 SLD
GCC15DREF-S734 CONN EDGECARD 30POS .100 EYELET
ECC20DRYN-S734 CONN EDGECARD 40POS DIP .100 SLD
MAX634ESA+T IC REG INV FLYBK ADJ 0.15A 8SOIC
MAX660ESA+T IC REG SWITCHD CAP DBL INV 8SOIC
相关代理商/技术参数
参数描述
MAX15038ETG+ 功能描述:直流/直流开关调节器 4A 2MHz Step-Down w/Integrated Switch RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
MAX15038ETG+T 功能描述:直流/直流开关调节器 4A 2MHz Step-Down w/Integrated Switch RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
MAX15038EVKIT+ 功能描述:电源管理IC开发工具 4A 2MHz Step-Down w/Integrated Switch RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
MAX15039ETG+ 功能描述:直流/直流开关调节器 6A 2MHz Step-Down w/Integrated Switch RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
MAX15039ETG+T 功能描述:直流/直流开关调节器 6A 2MHz Step-Down w/Integrated Switch RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5