参数资料
型号: MAX1631EAI+
厂商: Maxim Integrated Products
文件页数: 11/29页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 28-SSOP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 46
PWM 型: 电流模式,混合
输出数: 2
频率 - 最大: 330kHz
占空比: 99%
电源电压: 4.2 V ~ 30 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 28-SSOP(0.209",5.30mm 宽)
包装: 管件
Multi-Output, Low-Noise Power-Supply
Controllers for Notebook Computers
_______________Detailed Description
The MAX1630 is a dual, BiCMOS, switch-mode power-
supply controller designed primarily for buck-topology
regulators in battery-powered applications where high effi-
ciency and low quiescent supply current are critical. Light-
load efficiency is enhanced by automatic Idle Mode?
operation, a variable-frequency pulse-skipping mode that
reduces transition and gate-charge losses. Each step-
down, power-switching circuit consists of two N-channel
MOSFETs, a rectifier, and an LC output filter. The output
voltage is the average AC voltage at the switching node,
which is regulated by changing the duty cycle of the
MOSFET switches. The gate-drive signal to the N-channel
high-side MOSFET must exceed the battery voltage, and
is provided by a flying-capacitor boost circuit that uses a
100nF capacitor connected to BST_.
Devices in the MAX1630 family contain ten major circuit
blocks (Figure 2).
The two pulse-width modulation (PWM) controllers each
consist of a Dual Mode? feedback network and multi-
plexer, a multi-input PWM comparator, high-side and
low-side gate drivers, and logic. MAX1630/MAX1631/
MAX1632 contain fault-protection circuits that monitor
the main PWM outputs for undervoltage and overvolt-
age. A power-on sequence block controls the power-
up timing of the main PWMs and determines whether
one or both of the outputs are monitored for undervolt-
age faults. The MAX1630/MAX1632/MAX1633/
MAX1635 include a secondary feedback network and
12V linear regulator to generate a 12V output from a
coupled-inductor flyback winding. The MAX1631/
MAX1634 have a secondary feedback input (SECFB)
instead, which allows a quasi-regulated, adjustable-
output, coupled-inductor flyback winding to be attached
PWM Controller Block
The two PWM controllers are nearly identical. The only
differences are fixed output settings (3.3V vs. 5V), the
VL/CSL5 bootstrap switch connected to the +5V PWM,
and SECFB. The heart of each current-mode PWM con-
troller is a multi-input, open-loop comparator that sums
three signals: the output voltage error signal with
respect to the reference voltage, the current-sense sig-
nal, and the slope compensation ramp (Figure 3). The
PWM controller is a direct-summing type, lacking a tra-
ditional error amplifier and the phase shift associated
with it. This direct-summing configuration approaches
ideal cycle-by-cycle control over the output voltage.
When SKIP = low, Idle Mode circuitry automatically
optimizes efficiency throughout the load current range.
Idle Mode dramatically improves light-load efficiency
by reducing the effective frequency, which reduces
switching losses. It keeps the peak inductor current
above 25% of the full current limit in an active cycle,
allowing subsequent cycles to be skipped. Idle Mode
transitions seamlessly to fixed-frequency PWM opera-
tion as load current increases.
With SKIP = high, the controller always operates in
fixed-frequency PWM mode for lowest noise. Each
pulse from the oscillator sets the main PWM latch that
turns on the high-side switch for a period determined
by the duty factor (approximately V OUT /V IN ). As the
high-side switch turns off, the synchronous rectifier
latch sets; 60ns later, the low-side switch turns on. The
low-side switch stays on until the beginning of the next
clock cycle.
Table 3. SKIP PWM Table
to either the 3.3V or the 5V main inductor. Bias genera-
tor blocks include the 5V IC internal rail (VL) linear regu-
lator, 2.5V precision reference, and automatic bootstrap
switchover circuit. The PWMs share a common
200kHz/300kHz synchronizable oscillator.
These internal IC blocks aren’t powered directly from
the battery. Instead, the 5V VL linear regulator steps
down the battery voltage to supply both VL and the
gate drivers. The synchronous-switch gate drivers are
directly powered from VL, while the high-side switch
gate drivers are indirectly powered from VL via an
external diode-capacitor boost circuit. An automatic
bootstrap circuit turns off the +5V linear regulator and
powers the IC from the 5V PWM output voltage if the
output is above 4.5V.
SKIP
Low
Low
High
High
LOAD
CURRENT
Light
Heavy
Light
Heavy
MODE
Idle
PWM
PWM
PWM
DESCRIPTION
Pulse-skipping, supply cur-
rent = 250μA at V IN = 12V,
discontinuous inductor
current
Constant-frequency PWM,
continuous inductor current
Constant-frequency PWM,
continuous inductor current
Constant-frequency PWM,
continuous inductor current
______________________________________________________________________________________
11
相关PDF资料
PDF描述
MAX5067ETH+ IC REG CTRLR BUCK PWM CM 44-TQFN
MAX5041EAI+ IC REG CTRLR BUCK PWM CM 28-SSOP
URS1V332MRD CAP ALUM 3300UF 35V 20% RADIAL
SLPX392M063E3P3 CAP ALUM 3900UF 63V 20% SNAP
SLPX153M025E3P3 CAP ALUM 15000UF 25V 20% SNAP
相关代理商/技术参数
参数描述
MAX1631EAI+ 功能描述:DC/DC 开关控制器 Multi-Out Low-Noise Power-Supply Ctlr RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX1631EAI+T 功能描述:DC/DC 开关控制器 Multi-Out Low-Noise Power-Supply Ctlr RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX1631EAI-T 功能描述:DC/DC 开关控制器 RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX1631EAI-TG074 制造商:Rochester Electronics LLC 功能描述: 制造商:Maxim Integrated Products 功能描述:
MAX1631EVKIT-SO 功能描述:DC/DC 开关控制器 Evaluation Kit for the MAX1630 MAX1631 MAX1632 RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK