参数资料
型号: MAX17528GTJ+
厂商: Maxim Integrated Products
文件页数: 23/41页
文件大小: 0K
描述: IC PWM CTRLR STP-DWN 32TQFN-EP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 60
系列: Quick-PWM™
应用: 控制器,Intel IMVP-6.5? GMCH
输入电压: 4.5 V ~ 5.5 V
输出数: 1
输出电压: 0.01 V ~ 1.5 V
工作温度: -40°C ~ 105°C
安装类型: 表面贴装
封装/外壳: 32-WFQFN 裸露焊盘
供应商设备封装: 32-TQFN-EP(5x5)
包装: 管件
1-Phase Quick-PWM
Intel IMVP-6.5/GMCH Controllers
= ?
? R
? R 1 + R 2 ?
On-times  translate  only  roughly  to  switching  frequen-
cies. The on-times guaranteed in the Electrical
Characteristics table are influenced by switching
delays in the external high-side MOSFET. Resistive
losses, including the inductor, both MOSFETs, and
printed-circuit board (PCB) copper losses in the output
and ground tend to raise the switching frequency as
the load current increases. Under light-load conditions,
the dead-time effect increases the effective on-time,
requirements (R CS x I OUT(MAX) < 50mV), and the time
constant of the RC network should match the inductor’s
time constant (L/R DCR ):
? R 2 ?
R CS DCR
and:
? R 1 + R 2 ?
reducing the switching frequency. It occurs only during
forced-PWM operation and dynamic output-voltage
transitions when the inductor current reverses at light-
R DCR =
L
C EQ
? 1 1 ?
? ?
( V OUT + V DIS )
t ON IN DIS CHG )
( V + V
f SW =
or  negative-load  currents.  With  reversed  inductor  cur-
rent, the inductor’s EMF causes LX to go high earlier
than normal, extending the on-time by a period equal to
the DH-rising dead time. For loads above the critical
conduction point, where the dead-time effect is no
longer a factor, the actual switching frequency is:
? V
where V DIS is the sum of the parasitic voltage drops in
the inductor discharge path, including synchronous rec-
tifier, inductor, and PCB resistances; V CHG is the sum of
the parasitic voltage drops in the inductor charge path,
including high-side switch, inductor, and PCB resis-
tances; and t ON is the on-time as determined above.
Current Sense
The output current is differentially sensed by the high-
impedance current-sense inputs (CSP and CSN). Low-
offset amplifiers are used for voltage-positioning gain,
current-limit protection, and current monitoring. Sensing
the current at the output offers advantages, including less
noise sensitivity and the flexibility to use either a current-
sense resistor or the DC resistance of the power inductor.
Using the DC resistance (R DCR ) of the inductor allows
higher efficiency. In this configuration, the initial toler-
where R CS is the required current-sense resistance, and
R DCR is the inductor’s series DC resistance. Use the
worst-case inductance and R DCR values provided by
the inductor manufacturer, adding some margin for the
inductance drop over temperature and load. To mini-
mize the current-sense error due to the current-sense
inputs’ bias current (I CSP ), choose R1 || R2 to be less
than 2k ? and use the above equation to determine the
sense capacitance (C EQ ). Choose capacitors with 5%
tolerance and resistors with 1% tolerance specifications.
Temperature compensation is recommended for this
current-sense method. See the Voltage Positioning and
Loop Compensation section for detailed information.
When using a current-sense resistor for accurate output-
voltage positioning, the circuit requires a differential RC
filter to eliminate the AC voltage step caused by the
equivalent series inductance (L ESL ) of the current-sense
resistor (see Figure 4). The ESL-induced voltage step
does not affect the average current-sense voltage, but
results in a significant peak current-sense voltage error
that results in unwanted offsets in the regulation voltage
and results in early current-limit detection. Similar to the
inductor DCR sensing method, the RC filter’s time con-
stant should match the L/R time constant formed by the
current-sense resistor’s parasitic inductance:
ance and temperature coefficient of the inductor’s DCR
must be accounted for in the output-voltage droop-
error budget and current monitor. This current-sense
L ESL
R SENSE
= C EQ R 1
method uses an RC filtering network to extract the cur-
rent information from the inductor (see Figure 4). The
resistive divider used should provide a current-sense
resistance (R CS ) low enough to meet the current-limit
where L ESL is the equivalent series inductance of the
current-sense resistor, R SENSE is the current-sense
resistance value, C EQ and R1 are the time-constant
matching components.
______________________________________________________________________________________
23
相关PDF资料
PDF描述
RYM12DRST-S664 CONN EDGECARD 24POS DIP .156 SLD
MAX17036GTL+ IC CTRLR VID QUICK-PWM 40-TQFN
VE-J1H-CZ-B1 CONVERTER MOD DC/DC 52V 25W
VI-2WD-EW-B1 CONVERTER MOD DC/DC 85V 100W
RCB40DHLD CONN EDGECARD 80POS DIP .050 SLD
相关代理商/技术参数
参数描述
MAX17528GTJ+ 功能描述:电流型 PWM 控制器 1-Phase Quick-PWM Controller RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX17528GTJ+T 功能描述:电流型 PWM 控制器 1-Phase Quick-PWM Controller RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX17535ETG+ 功能描述:电池管理 High Frequency SMBus Charger RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX17535ETG+T 功能描述:电池管理 High Frequency SMBus Charger RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX17535EVKIT+ 功能描述:电池管理 EVKIT RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel