参数资料
型号: MAX17528GTJ+
厂商: Maxim Integrated Products
文件页数: 35/41页
文件大小: 0K
描述: IC PWM CTRLR STP-DWN 32TQFN-EP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 60
系列: Quick-PWM™
应用: 控制器,Intel IMVP-6.5? GMCH
输入电压: 4.5 V ~ 5.5 V
输出数: 1
输出电压: 0.01 V ~ 1.5 V
工作温度: -40°C ~ 105°C
安装类型: 表面贴装
封装/外壳: 32-WFQFN 裸露焊盘
供应商设备封装: 32-TQFN-EP(5x5)
包装: 管件
1-Phase Quick-PWM
Intel IMVP-6.5/GMCH Controllers
The internal pulldown transistor that drives DL low is
robust, with a 0.25 ? (typ) on-resistance. This helps pre-
vent DL from being pulled up due to capacitive coupling
from the drain to the gate of the low-side MOSFETs
when the inductor node (LX) quickly switches from
ground to V IN . Applications with high input voltages and
long inductive driver traces must guarantee rising LX
edges do not pull up the low-side MOSFET’s gate, caus-
ing shoot-through currents. The capacitive coupling
MAX17528
BST
DH
LX
(R BST )*
C BST
N H
INPUT (V IN )
L
between LX and DL created by the MOSFET’s gate-to-
V GS ( TH ) < V IN ? RSS ?
drain  capacitance  (C RSS ),  gate-to-source  capacitance
(C ISS - C RSS ), and additional board parasitics should
not exceed the following minimum threshold:
? C ?
? C ISS ?
Typically, adding a 4700pF between DL and power
ground (C NL in Figure 11), close to the low-side
MOSFETs, greatly reduces coupling. Do not exceed
22nF of total gate capacitance to prevent excessive
turn-off delays.
V DD
DL
PGND
C BYP
(C NL )*
N L
Alternatively, shoot-through currents can be caused by
a combination of fast high-side MOSFETs and slow low-
side MOSFETs. If the turn-off delay time of the low-side
MOSFET is too long, the high-side MOSFETs can turn
on before the low-side MOSFETs have actually turned
off. Adding a resistor less than 5 ? in series with BST
slows down the high-side MOSFET turn-on time, elimi-
(RBST)* OPTIONAL—THE RESISTOR LOWERS EMI BY DECREASING
THE SWITCHING NODE RISE TIME.
(CNL)* OPTIONAL—THE CAPACITOR REDUCES LX TO DL CAPACITIVE
COUPLING THAT CAN CAUSE SHOOT-THROUGH CURRENTS.
Figure 11. Gate-Drive Circuit
nating the shoot-through currents without degrading
the turn-off time (R BST in Figure 11). Slowing down the
high-side MOSFET also reduces the LX node rise time,
thereby reducing EMI and high-frequency coupling
responsible for switching noise.
Quick-PWM
Design Procedure
Firmly establish the input voltage range and maximum
load current before choosing a switching frequency
and inductor operating point (ripple-current ratio). The
primary design trade-off lies in choosing a good switch-
ing frequency and inductor operating point, and the fol-
lowing five factors dictate the rest of the design:
? Input voltage range: The maximum value
(V IN(MAX) ) must accommodate the worst-case high
AC adapter voltage. The minimum value (V IN(MIN) )
must account for the lowest input voltage after
drops due to connectors, fuses, and battery selec-
tor switches. If there is a choice at all, lower input
voltages result in better efficiency.
?
?
Maximum load current: There are two values to
consider. The peak load current (I LOAD(MAX) )
determines the instantaneous component stresses
and filtering requirements, and thus, drives output
capacitor selection, inductor saturation rating, and
the design of the current-limit circuit. The continu-
ous load current (I LOAD ) determines the thermal
stresses, and thus, drives the selection of input
capacitors, MOSFETs, and other critical heat-con-
tributing components. Modern notebook CPUs gen-
erally exhibit I LOAD = I LOAD(MAX) x 80%.
Load line (voltage positioning): The load line (out-
put voltage vs. load slope) dynamically lowers the
output voltage in response to the load current, reduc-
ing the output capacitance requirement and the
processor’s power dissipation. The Intel specification
clearly defines the load-line requirement in the power-
supply specifications for each processor family.
______________________________________________________________________________________
35
相关PDF资料
PDF描述
RYM12DRST-S664 CONN EDGECARD 24POS DIP .156 SLD
MAX17036GTL+ IC CTRLR VID QUICK-PWM 40-TQFN
VE-J1H-CZ-B1 CONVERTER MOD DC/DC 52V 25W
VI-2WD-EW-B1 CONVERTER MOD DC/DC 85V 100W
RCB40DHLD CONN EDGECARD 80POS DIP .050 SLD
相关代理商/技术参数
参数描述
MAX17528GTJ+ 功能描述:电流型 PWM 控制器 1-Phase Quick-PWM Controller RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX17528GTJ+T 功能描述:电流型 PWM 控制器 1-Phase Quick-PWM Controller RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX17535ETG+ 功能描述:电池管理 High Frequency SMBus Charger RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX17535ETG+T 功能描述:电池管理 High Frequency SMBus Charger RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX17535EVKIT+ 功能描述:电池管理 EVKIT RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel