参数资料
型号: MAX1921EUT33+T
厂商: Maxim Integrated Products
文件页数: 6/11页
文件大小: 0K
描述: IC REG BUCK SYNC 3.3V SOT23-6
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 2,500
类型: 降压(降压)
输出类型: 固定
输出数: 1
输出电压: 3.3V
输入电压: 2 V ~ 5.5 V
频率 - 开关: 1.2MHz
电流 - 输出: 400mA
同步整流器:
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: SOT-23-6
包装: 带卷 (TR)
供应商设备封装: SOT-6
Low-Voltage, 400mA Step-Down
DC-DC Converters in SOT23
DutyCycle ( MAX ) =
× 100 %
Design Procedure
The MAX1920/MAX1921 are optimized for small external
components and fast transient response. There are
several application circuits (Figures 1 through 4) to
allow the choice between ceramic or tantalum output
capacitor and internally or externally set output volt-
ages. The use of a small ceramic output capacitor is
preferred for higher reliability, improved voltage-posi-
tioning transient response, reduced output ripple, and
the smaller size and greater availability of ceramic versus
tantalum capacitors.
Voltage Positioning
Figures 1 and 2 are the application circuits that utilize
small ceramic output capacitors. For stability, the circuit
obtains feedback from the LX node through R1, while
load transients are fed-forward through C FF . Because
there is no D.C. feedback from the output, the output volt-
age exhibits load regulation that is equal to the output
load current multiplied by the inductor’s series resistance.
This small amount of load regulation is similar to voltage
positioning as used by high-powered microprocessor
supplies intended for personal computers. For the
MAX1920/MAX1921, voltage positioning eliminates or
greatly reduces undershoot and overshoot during load
transients (see the Typical Operating Characteristics ),
which effectively halves the peak-to-peak output voltage
excursions compared to traditional step-down converters.
For convenience, Table 1 lists the recommended external
component values for use with the MAX1921 application
circuit of Figure 1 with various input and output voltages.
In order to calculate the smallest inductor, several cal-
culations are needed. First, calculate the maximum
duty cycle of the application as:
V OUT
V IN ( MIN )
Second, calculate the critical voltage across the inductor as:
if DutyCycle(MAX) < 50%,
then V CRITICAL = (V IN (MIN) - V OUT ),
else V CRITICAL = V OUT
Last, calculate the minimum inductor value as:
L ( MIN ) = 2 . 5 × 10 ? 6 × V CRITICAL
Select the next standard value larger than L(MIN). The
L(MIN) calculation already includes a margin for induc-
tance tolerance. Although values much larger than
L(MIN) work, transient performance, efficiency, and
inductor size suffer.
A 550mA rated inductor is enough to prevent saturation
for output currents up to 400mA. Saturation occurs
when the inductor’s magnetic flux density reaches the
maximum level the core can support and inductance
falls. Choose a low DC-resistance inductor to improve
efficiency. Tables 2 and 3 list some suggested inductors
and suppliers.
Capacitor Selection
For nearly all applications, the input capacitor, C IN ,
may be as small as 2.2μF ceramic with X5R or X7R
Table 2. Suggested Inductors
Table 1. MAX1921 Suggested
Components for Figure 1
INPUT SOURCE
PART
NUMBER
Coilcraft
LPO1704
L
(μH)
4.7
6.8
10
R L
(ohms max)
0.200
0.320
0.410
Isat (A)
1.10
0.90
0.80
SIZE
6.6 x 5.5 x 1.0
= 36.3mm 3
5V
OUTPUT
3.3V
3.0V
2.5V
3.3V, 1 Li+,
3 x AA
L = 10μH, C OUT = 10μF,
R1 = 8.25k ? , C FF = 3300pF
L = 6.8μH, C OUT = 6.8μF,
R1 = 5.62k ? , C FF = 4700pF
L = 10μH,
2.5V, 2 x AA
N/A
Sumida
CDRH3D16
Sumida
CDRH2D18
Toko
D312F
4.7
6.8
10
4.7
6.8
4.7
10
0.080
0.095
0.160
0.081
0.108
0.38
0.79
0.90
0.73
0.55
0.63
0.57
0.74
0.50
3.8 x 3.8 x 1.8
= 26.0mm 3
3.2 x 3.2 x 2.0
= 20.5mm 3
3.6 x 3.6 x 1.2
= 15.6mm 3
1.8V
1.5V
C OUT = 10μF,
R1 = 8.25k ? ,
C FF = 3300pF
L = 4.7μH, C OUT = 4.7μF,
R1 = 4.75k ? , C FF = 5600pF
Inductor Selection
Toko
D412F
Toko
D52LC
4.7
10
4.7
6.8
0.230
0.490
0.087
0.105
0.84
0.55
1.14
0.95
4.6 x 4.6 x 1.2
= 25.4mm 3
5.0 x 5.0 x 2.0
= 50.0mm 3
10
0.150
0.76
6
_______________________________________________________________________________________
相关PDF资料
PDF描述
MAX1922ESA+ IC SW CUR LIMIT USB 8-SOIC
MAX1925ETC+ IC CHARGER LI+ 12-TQFN
MAX1928EUB18+ IC REG BUCK SYNC 1.8V .8A 10UMAX
MAX1930ESA+ IC SW CUR LIMIT USB 8-SOIC
MAX1931EUB+T IC SW CUR LIMIT USB 10-UMAX
相关代理商/技术参数
参数描述
MAX1921EVKIT 功能描述:电源管理IC开发工具 MAX1921 Eval Kit RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
MAX1922ESA 功能描述:电源开关 IC - USB 1A Crnt-Ltd Switch for 2 USB Ports RoHS:否 制造商:Micrel 电源电压-最小:2.7 V 电源电压-最大:5.5 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:SOIC-8 封装:Tube
MAX1922ESA+ 功能描述:电源开关 IC - USB 1A Crnt-Ltd Switch for 2 USB Ports RoHS:否 制造商:Micrel 电源电压-最小:2.7 V 电源电压-最大:5.5 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:SOIC-8 封装:Tube
MAX1922ESA+C71073 功能描述:电源开关 IC - USB 1A Crnt-Ltd Switch for 2 USB Ports RoHS:否 制造商:Micrel 电源电压-最小:2.7 V 电源电压-最大:5.5 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:SOIC-8 封装:Tube
MAX1922ESA+T 功能描述:电源开关 IC - USB 1A Crnt-Ltd Switch for 2 USB Ports RoHS:否 制造商:Micrel 电源电压-最小:2.7 V 电源电压-最大:5.5 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:SOIC-8 封装:Tube