参数资料
型号: MAX5003CSE+T
厂商: Maxim Integrated Products
文件页数: 14/16页
文件大小: 0K
描述: IC REG CTRLR FLYBK ISO VM 16SOIC
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 2,500
PWM 型: 电压模式
输出数: 1
频率 - 最大: 1.2MHz
占空比: 75%
电源电压: 11 V ~ 110 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: 0°C ~ 70°C
封装/外壳: 16-SOIC(0.154",3.90mm 宽)
包装: 带卷 (TR)
High-Voltage PWM
Power-Supply Controller
where:
R MAXTON = Resistor between the MAXTON pin and
ground
V MIN = Minimum power-line voltage
V UVL = Power-line trip voltage
DC MAX (V MIN ) = Maximum duty cycle at minimum
the ripple will be a fraction of this depending on the
duty cycle. For a 50% duty cycle, the ripple due to
the capacitance is approximately 45mV.
8)The PWM gain can be calculated from:
dV OUT R L ? V MIN ?
A PWM = = ? ? DC MAX ( VMI
dV CON 2 × L PRI ×? SW ? 2.0V ?
? ? 50 % ? 3
power-line voltage
For this application circuit, a 10% margin is reason-
able, so the value used is 50k ? . This gives a maxi-
=
R L ? 36 V ?
2 × L PRI × ? SW ? 2 . 0 V ?
DC(V CON,VIN ) = ? CON
? ? ? ? ? × DC MAX(VMIN)
≈ ? ? ? ? ? ? 50%
? P = ? ? = ? ?
mum  duty  cycle  of  50%.  The  maximum  duty  cycle
can now be expressed as:
? V - 0.5V ? ? V MIN ? ? ? SW ?
? 2.0V ? ? V IN ? ? ? NOM ?
? V CON - 0.5V ? ? 36V ? ? ? SW ?
? 2.0V ? ? V IN ? ? ? NOM ?
where:
V CON = Voltage at the CON pin, input of the PWM
comparator
DC(V CON , V IN ) = Duty cycle, function of V CON and
V IN
0.5V and 2.5V are the values at the beginning and
end of the PWM ramp.
The term ? SW / ? NOM varies from 0.8 to 1.2 to allow
for clock frequency variation. If the clock is running
at 300kHz and the input voltage is fixed, then the
duty cycle is a scaled portion of the maximum duty
cycle, determined by V CON .
Note that while the above formula incorporates the
product of the maximum duty cycle and V IN , it is
independent of V IN . For 1A output (R L = 5 ? ), the
PWM gain is +3.0V/V. For a 10% load (R L = 50 ? ),
the gain is multiplied by the square root of 10 and
becomes +10V/V. The pole of the system due to the
output filter is 1 / 2 π RC, where R is the load resis-
tance and C the filter capacitor. Choosing a capaci-
tor and calculating the pole frequency by:
? 1 ? ? 1 ?
? 2 π × R L × C L ? ? 2 π × 5 ? × 44 μ F ?
it is 723Hz at full load. At 10% load it will be 72Hz,
since the load resistor is then 50 ? instead of 5 ? . The
total loop gain is equal to the PWM gain times the
gain in the combination of the voltage divider and
the error amplifier. The worst case for phase margin
is at full load. For a phase margin of 60 degrees, this
midband gain (G) must be set to be less than:
DC(V CON ,V MIN ) = ? CON
? V - 0.5V ?
? 50%
? 2.0V ?
G <
? UErrorAmp
tan( PM ) × A PWM ×? P
=
1 MHz
1 . 7 × 3 × 723 Hz
DC(V CON MAX ) = ? CON
? 25%
? V - 0.5V ?
,V
? 2.0V ?
DC(2.5V,V MIN ) = 50%
DC(2.5V,V MAX ) = 25%
DC(0.5V,V MIN ) = 0
DC(0.5V,V MAX ) = 0
7) Low-ESR/ESL ceramic capacitors were used in this
application. The output filter is made by two 22μF
ceramic capacitors in parallel. Normally, the ESR of
a capacitor is a dominant factor determining the rip-
ple, but in this case it is the capacitor value.
Calculating
where:
? U = Unity-gain frequency of error amplifier
PM = Phase margin angle
The DC accuracy of the regulator is a function of the
DC gain. For 1% accuracy, a DC gain of 20 is required.
Since the maximum midband gain for a stable
response is 16, an integrator with a flat midband gain
given by a zero is used. The midband gain is less than
16, to preserve stability, and the DC gain is much larger
than 20, to achieve high DC accuracy.
Optimization on the bench showed that a midband gain
of 5 gave fast transient response and settling with no
ringing. The zero was pushed as high in frequency as
I OUT
? SW × C
=
1 A
300 kHz × 44 μ F
= 76 mV
possible without losing stability. The zero must be a
factor of two or so below the system unity-gain frequen-
cy (crossover frequency) at minimum load. With the
14
______________________________________________________________________________________
相关PDF资料
PDF描述
VE-JTJ-EY-F4 CONVERTER MOD DC/DC 36V 50W
MAX5003CEE+T IC REG CTRLR FLYBK ISO VM 16QSOP
MAX5003ESE+T IC REG CTRLR FLYBK ISO VM 16SOIC
MAX15004AAUE+T IC REG CTRLR PWM CM 16-TSSOP
EBM36DCTI-S288 CONN EDGECARD 72POS .156 EXTEND
相关代理商/技术参数
参数描述
MAX5003EEE 功能描述:电压模式 PWM 控制器 PWM Power-Supply Controller RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX5003EEE+ 功能描述:电压模式 PWM 控制器 PWM Power-Supply Controller RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX5003EEE+G39 制造商:Rochester Electronics LLC 功能描述: 制造商:Maxim Integrated Products 功能描述:
MAX5003EEE+T 功能描述:电压模式 PWM 控制器 PWM Power-Supply Controller RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX5003EEE-T 功能描述:电压模式 PWM 控制器 PWM Power-Supply Controller RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel