参数资料
型号: MAX8664EVKIT+
厂商: Maxim Integrated Products
文件页数: 22/26页
文件大小: 0K
描述: KIT EVAL FOR MAX8664
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 1
主要目的: DC/DC,步降
输出及类型: 2,非隔离
输入电压: 4.5 ~ 28 V
稳压器拓扑结构: 降压
板类型: 完全填充
已供物品:
已用 IC / 零件: MAX8664
Low-Cost, Dual-Output, Step-Down
Controller with Fast Transient Response
To set the no-load output voltage (V OUT ), calculate the
Finally, calculate the value of Cr as follows:
R 3 = ?
? V OUT FB ? ? R 1 + R 2 ?
? ? ?
( V IN OUT )
? V
value of R3 as follows:
? V FB ? ? R 1 × R 2 ?
? V
Cr =
V OUT
V IN
R 1 × f S × | ( V FB _ RIPPLE ? V OUT _ RIPPLE ) |
where V FB is the feedback regulation voltage (0.6V
when using the internal reference or V REFIN2 for exter-
nal reference). If the desired output voltage is equal to
the reference voltage (typical for tracking applications),
R3 is not installed.
MOSFET Selection
Each output of the MAX8664 is capable of driving two to
four external, logic-level, n-channel MOSFETs as the cir-
cuit switch elements. The key selection parameters are:
? On-resistance (R DS(ON) )—the lower, the better.
To achieve the lowest possible load regulation in appli-
cations where voltage positioning is not desired, R1 is
not installed and R3 is calculated as follows:
?
Maximum Drain-to-Source Voltage (V DSS )—should
be at least 20% higher than the input supply rail at
the high-side MOSFET’s drain.
? × R 2
R 3 = ?
? V FB ?
? V OUT ? V FB ?
Compensation
To ensure stable operation, connect a compensation
capacitor (Cr) across the upper feedback resistor as
shown in Figure 7. To find the value of this capacitor,
follow the compensation design procedure below.
Choose a closed-loop bandwidth (f C ) that is less than
1/3 the switching frequency (f S ). Calculate the output
double pole (f O ) as follows:
? Gate charges (Q g , Q gd , Q gs )— the lower, the better.
For a 5V input application, choose MOSFETs with rated
R DS(ON) at V GS ≤ 4.5V. With higher input voltages, the
internal VL regulator provides 6.5V for gate drive in
order to minimize the on-resistance for a wide range of
MOSFETs.
For a good compromise between efficiency and cost,
choose the high-side MOSFETs that have conduction
losses equal to switching losses at nominal input voltage
and output current. Low R DS(ON) is preferred for low-
side MOSFETs. Make sure that the low-side MOSFET(s)
does not spuriously turn on due to dV/dt caused by the
2 π L × C OUT × LOAD
f O =
1
R + ESR
R LOAD + DCR
high-side MOSFET(s) turning on, as this would result in
shoot-through current and degrade the efficiency.
MOSFETs with a lower Q gd / Q gs ratio have higher
immunity to dV/dt. For high-current applications, it is
The FB peak-to-peak voltage ripple is:
often preferable to parallel two MOSFETs rather than to
use a single large MOSFET.
? R 2 ? ?
? ?
?
× ?
V FB _ RIPPLE = ?
R 2 ? ? ?
? 1 + +
?
R 1 ? ? ? ? ?
?
? R 3
1 +
R 2
R 1
1 +
V OUT
DCR ?
R LOAD ?
f C
f O
?
?
?
?
?
For proper thermal management, the power dissipation
must be calculated at the desired maximum operating
junction temperature, maximum output current, and
worst-case input voltage. For the-low side MOSFET(s),
the worst-case power dissipation occurs at the highest
The output ripple voltage due to the ESR of the output
capacitor, C OUT, is:
duty cycle (V IN(MAX) ). The low-side MOSFET(s) operate
as zero voltage switches; therefore, major losses are
the channel conduction loss (P LSCC ) and the body
× I 2 LOAD ( MAX ) × R DS ( ON )
V IN ( MAX ) ? ?
P LSCC ( MAX ) = ? 1 ?
V OUT _ RIPPLE =
V OUT
V IN
( V IN ? V OUT )
L × f S
×
diode conduction loss (P LSDC ):
? V OUT ?
?
? ESR +
8 × C O S ?
× f
?
?
1 ?
?
Use R DS(ON) at T J(MAX) :
Target the feedback ripple in the 25mV to 60mV range.
For high duty-cycle applications (> 70%), a feedback
ripple of 25mV is recommended.
P LSDC(MAX) = 2 x I LOAD(MAX) V F x t DT x f S
where V F is the body diode forward-voltage drop, t DT is the
dead time between high-side and low-side switching tran-
sitions (25ns typical), and f S is the switching frequency.
22
______________________________________________________________________________________
相关PDF资料
PDF描述
L-14CR18JV4T CER INDUCTOR 180NH 0603
GEM30DTAN CONN EDGECARD 60POS R/A .156 SLD
MLD2N06CLT4 MOSFET N-CH CLAMPED 2A 62V DPAK
100R22-127B CABLE FLAT FLEX 22POS 1MM 5"
RS3-4815DZ CONV DC/DC 3W 20-60VIN +/-15VOUT
相关代理商/技术参数
参数描述
MAX8664EVKIT+ 功能描述:电源管理IC开发工具 MAX8664 Evan Kit RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
MAX8667ETEAA+ 功能描述:直流/直流开关转换器 1.5MHz Dl Step-Down DC/DC Converter RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MAX8667ETEAA+T 功能描述:直流/直流开关转换器 1.5MHz Dl Step-Down DC/DC Converter RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MAX8667ETEAB+ 功能描述:直流/直流开关转换器 1.5MHz Dl Step-Down DC/DC Converter RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MAX8667ETEAB+T 功能描述:直流/直流开关转换器 1.5MHz Dl Step-Down DC/DC Converter RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT