参数资料
型号: MAX8745ETJ+
厂商: Maxim Integrated Products
文件页数: 29/36页
文件大小: 0K
描述: IC CNTRLR PWR SUP QUAD 32TQFN
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 60
应用: 控制器,笔记本电脑电源系统
输入电压: 6 V ~ 26 V
输出数: 4
输出电压: 3.3V,5V,1 V ~ 26 V
工作温度: 0°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 32-WFQFN 裸露焊盘
供应商设备封装: 32-TQFN-EP(5x5)
包装: 管件
High-Efficiency, Quad-Output, Main Power-
Supply Controllers for Notebook Computers
V RIPPLE ( P – P ) = IDLE ESR
(see the Output-Capacitor Stability Consideration section),
the filter capacitor’s ESR dominates the output voltage rip-
ple. So the output capacitor’s size depends on the maxi-
mum ESR required to meet the output voltage ripple
(V RIPPLE(P-P) ) specifications:
V RIPPLE(P-P) = R ESR I LOAD(MAX) LIR
In idle mode, the inductor current becomes discontinu-
ous, with peak currents set by the idle mode current-
sense threshold (V IDLE = 0.2V LIMIT ). In idle mode, the
no-load output ripple may be determined as follows:
V R
R SENSE
The actual capacitance value required relates to the
physical size needed to achieve low ESR, as well as to
the chemistry of the capacitor technology. Thus, the
capacitor is usually selected by ESR and voltage rating
rather than by capacitance value (this is true of tanta-
lums, OS-CONs, polymers, and other electrolytics).
When using low-capacity filter capacitors, such as
ceramic capacitors, size is usually determined by the
capacity needed to prevent V SAG and V SOAR from
causing problems during load transients. Generally,
once enough capacitance is added to meet the over-
shoot requirement, undershoot at the rising load edge
is no longer a problem (see the V SAG and V SOAR equa-
tions in the Transient Response section). However, low-
capacity filter capacitors typically have high ESR zeros
that may affect the overall stability (see the Output-
Capacitor Stability Considerations section).
Output-Capacitor Stability Considerations
Stability is determined by the value of the ESR zero rel-
ative to the switching frequency. The boundary of insta-
bility is given by the following equation:
For low-input voltage applications where the duty cycle
exceeds 50% (V OUT /V IN ≥ 50%), the output ripple volt-
age should not be greater than twice the internal slope-
compensation voltage:
V RIPPLE ≤ 0.02 x V OUT
where V RIPPLE equals Δ I INDUCTOR x R ESR . The worst-
case ESR limit occurs when V IN = 2 x V OUT , so the
above equation may be simplified to provide the follow-
ing boundary condition:
R ESR ≤ 0.04 x L x f SW
Do not put high-value ceramic capacitors directly
across the feedback sense point without taking precau-
tions to ensure stability. Large ceramic capacitors can
have a high ESR zero frequency and cause erratic,
unstable operation. However, it is easy to add enough
series resistance by placing the capacitors a couple of
inches downstream from the feedback sense point,
which should be as close as possible to the inductor.
Unstable operation manifests itself in two related but
distinctly different ways: short/long pulses and cycle
skipping resulting in lower frequency operation.
Instability occurs due to noise on the output or because
the ESR is so low that there is not enough voltage ramp
in the output voltage signal. This “fools” the error com-
parator into triggering too early or into skipping a cycle.
Cycle skipping is more annoying than harmful, resulting
in nothing worse than increased output ripple.
However, it can indicate the possible presence of loop
instability due to insufficient ESR. Loop instability can
result in oscillations at the output after line or load
steps. Such perturbations are usually damped, but can
cause the output voltage to rise above or fall below the
tolerance limits.
The easiest method for checking stability is to apply a
f ESR ≤ OSC
f ESR =
where:
f
π
1
2 π R ESR C OUT
very fast zero-to-max load transient and carefully
observe the output-voltage-ripple envelope for over-
shoot and ringing. It may help to simultaneously moni-
tor the inductor current with an AC current probe. Do
not allow more than three cycles of ringing after the ini-
tial step-response under/overshoot.
For a typical 300kHz application, the ESR zero frequen-
cy must be well below 95kHz, preferably below 50kHz.
Tantalum and OS-CON capacitors in widespread use
at the time of publication have typical ESR zero fre-
quencies of 25kHz. In the design example used for
inductor selection, the ESR needed to support 25mV P-P
ripple is 25mV / 1.5A = 16.7m Ω . One 220μF/4V Sanyo
polymer (TPE) capacitor provides 15m Ω (max) ESR.
This results in a zero at 48kHz, well within the bounds
of stability.
Input Capacitor Selection
The input capacitor must meet the ripple current
requirement (I RMS ) imposed by the switching currents.
For an out-of-phase regulator, the total RMS current in
the input capacitor is a function of the load currents,
the input currents, the duty cycles, and the amount of
overlap as defined in Figure 8.
______________________________________________________________________________________
29
相关PDF资料
PDF描述
MAX8751ETJ+T IC CNTRLR CCFL INV 32-TQFN
MAX8752ETA+T IC DC-DC CONV TFT LCD 8-TDFN
MAX8753ETI+T IC DC-DC CONV TFT LCD 28TQFN
MAX8756ETI+T IC CNTRL DUAL PS 28-TQFN
MAX8758ETG+T IC REG STEP UP 24-TQFN
相关代理商/技术参数
参数描述
MAX8745ETJ+ 功能描述:电流和电力监控器、调节器 Quad-Out Main Power Supply Controller RoHS:否 制造商:STMicroelectronics 产品:Current Regulators 电源电压-最大:48 V 电源电压-最小:5.5 V 工作温度范围:- 40 C to + 150 C 安装风格:SMD/SMT 封装 / 箱体:HPSO-8 封装:Reel
MAX8745ETJ+T 功能描述:电流和电力监控器、调节器 Quad-Out Main Power Supply Controller RoHS:否 制造商:STMicroelectronics 产品:Current Regulators 电源电压-最大:48 V 电源电压-最小:5.5 V 工作温度范围:- 40 C to + 150 C 安装风格:SMD/SMT 封装 / 箱体:HPSO-8 封装:Reel
MAX874C/D 功能描述:基准电压& 基准电流 RoHS:否 制造商:STMicroelectronics 产品:Voltage References 拓扑结构:Shunt References 参考类型:Programmable 输出电压:1.24 V to 18 V 初始准确度:0.25 % 平均温度系数(典型值):100 PPM / C 串联 VREF - 输入电压(最大值): 串联 VREF - 输入电压(最小值): 分流电流(最大值):60 mA 最大工作温度:+ 125 C 封装 / 箱体:SOT-23-3L 封装:Reel
MAX874CPA 功能描述:基准电压& 基准电流 RoHS:否 制造商:STMicroelectronics 产品:Voltage References 拓扑结构:Shunt References 参考类型:Programmable 输出电压:1.24 V to 18 V 初始准确度:0.25 % 平均温度系数(典型值):100 PPM / C 串联 VREF - 输入电压(最大值): 串联 VREF - 输入电压(最小值): 分流电流(最大值):60 mA 最大工作温度:+ 125 C 封装 / 箱体:SOT-23-3L 封装:Reel
MAX874CPA+ 功能描述:基准电压& 基准电流 RoHS:否 制造商:STMicroelectronics 产品:Voltage References 拓扑结构:Shunt References 参考类型:Programmable 输出电压:1.24 V to 18 V 初始准确度:0.25 % 平均温度系数(典型值):100 PPM / C 串联 VREF - 输入电压(最大值): 串联 VREF - 输入电压(最小值): 分流电流(最大值):60 mA 最大工作温度:+ 125 C 封装 / 箱体:SOT-23-3L 封装:Reel