参数资料
型号: MC74HC4060ADR2G
厂商: ON Semiconductor
文件页数: 13/13页
文件大小: 0K
描述: IC COUNTER OSC 14STAGE 16SOIC
标准包装: 1
系列: 74HC
逻辑类型: 二进制计数器
方向:
元件数: 1
每个元件的位元数: 14
复位: 异步
计数速率: 50MHz
触发器类型: 负边沿
电源电压: 2 V ~ 6 V
工作温度: -55°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 16-SOIC(0.154",3.90mm 宽)
供应商设备封装: 16-SOIC
包装: 标准包装
其它名称: MC74HC4060ADR2GOSDKR
MC74HC4060A
http://onsemi.com
9
DESIGN PROCEDURES
The following procedure applies for oscillators operating below 2MHz where Z is a resistor R1. Above 2MHz, additional
impedance elements should be considered: Cout and Ca of the amp, feedback resistor Rf, and amplifier phase shift error from
180
°C.
Step 1: Calculate the equivalent series circuit of the crystal at the frequency of oscillation.
Ze +
* jXCo(Rs ) jXLs * jXCs)
* jXCo ) Rs ) jXLs * jXCs
+ Re ) jXe
Reactance jXe should be positive, indicating that the crystal is operating as an inductive reactance at the oscillation frequency.
The maximum Rs for the crystal should be used in the equation.
Step 2: Determine
β, the attenuation, of the feedback network. For a closed-loop gain of 2,Aνβ = 2,β = 2/Aν where Aν is
the gain of the HC4060A amplifier.
Step 3: Determine the manufacturer’s loading capacitance. For example: A manufacturer may specify an external load
capacitance of 32pF at the required frequency.
Step 4: Determine the required Q of the system, and calculate Rload, For example, a manufacturer specifies a crystal Q of
100,000. In-circuit Q is arbitrarily set at 20% below crystal Q or 80,000. Then Rload = (2πfoLS/Q) Rs where Ls and Rs are
crystal parameters.
Step 5: Simultaneously solve, using a computer,
b +
XC @ XC2
R @ Re ) XC2 (Xe * XC)
( Eq 1
(with feedback phase shift = 180°)
Xe + XC2 ) XC )
ReXC2
R
+ XCload
( Eq 2
(where the loading capacitor is an external load, not including Co)
Rload +
RXCoXC2 [(XC ) XC2)(XC ) XCo) * XC(XC ) XCo ) XC2)]
X2C2(XC ) XCo)2 ) R2(XC ) XCo ) XC2)2
( Eq 3
Here R = Rout + R1. Rout is amp output resistance, R1 is Z. The C corresponding to XC is given by C = C1 + Cin.
Alternately, pick a value for R1 (i.e, let R1 = RS). Solve Equations 1 and 2 for C1 and C2. Use Equation 3 and the fact that
Q = 2
πfoLs/(Rs + Rload) to find in-circuit Q. If Q is not satisfactory pick another value for R1 and repeat the procedure.
CHOOSING R1
Power is dissipated in the effective series resistance of the
crystal. The drive level specified by the crystal manufacturer
is the maximum stress that a crystal can withstand without
damage or excessive shift in frequency. R1 limits the drive
level.
To verify that the maximum dc supply voltage does not
overdrive the crystal, monitor the output frequency as a
function of voltage at Osc Out 2 (Pin 9). The frequency
should increase very slightly as the dc supply voltage is
increased. An overdriven crystal will decrease in frequency
or become unstable with an increase in supply voltage. The
operating supply voltage must be reduced or R1 must be
increased in value if the overdriven condition exists. The
user should note that the oscillator start-up time is
proportional to the value of R1.
SELECTING Rf
The feedback resistor, Rf, typically ranges up to 20MW. Rf
determines the gain and bandwidth of the amplifier. Proper
bandwidth insures oscillation at the correct frequency plus
roll-off to minimize gain at undesirable frequencies, such as
the first overtone. Rf must be large enough so as to not affect
the phase of the feedback network in an appreciable manner.
ACKNOWLEDGEMENTS AND RECOMMENDED
REFERENCES
The following publications were used in preparing this
data sheet and are hereby acknowledged and recommended
for reading:
Technical Note TN-24, Statek Corp.
Technical Note TN-7, Statek Corp.
D. Babin, “Designing Crystal Oscillators”, Machine
Design, March 7, 1985.
D. Babin, “Guidelines for Crystal Oscillator Design”,
Machine Design, April 25, 1985.
ALSO RECOMMENDED FOR READING:
E. Hafner, “The Piezoelectric Crystal Unit-Definitions
and Method of Measurement”, Proc. IEEE, Vol. 57, No. 2,
Feb., 1969.
D. Kemper, L. Rosine, “Quartz Crystals for Frequency
Control”, Electro-Technology, June, 1969.
P. J. Ottowitz, “A Guide to Crystal Selection”, Electronic
Design, May, 1966.
相关PDF资料
PDF描述
OSTVF225050 CONN TERM BLOCK HDR 22POS 5.08MM
OSTV710A250 TERM BLOCK PLUG 7.5MM 10POS
OSTHI053050 CONN PLUG HEADER 5PS 7.62MM
OSTHI052050 CONN PLUG HEADER 5PS 7.5MM
OSTVM085581 PLUGGABLE CONN HEADER 8PS 5.08MM
相关代理商/技术参数
参数描述
MC74HC4060ADT 功能描述:计数器移位寄存器 2-6V 14-Stage Binary RoHS:否 制造商:Texas Instruments 计数器类型: 计数顺序:Serial to Serial/Parallel 电路数量:1 封装 / 箱体:SOIC-20 Wide 逻辑系列: 逻辑类型: 输入线路数量:1 输出类型:Open Drain 传播延迟时间:650 ns 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装:Reel
MC74HC4060ADTG 功能描述:计数器移位寄存器 2-6V 14-Stage Binary RoHS:否 制造商:Texas Instruments 计数器类型: 计数顺序:Serial to Serial/Parallel 电路数量:1 封装 / 箱体:SOIC-20 Wide 逻辑系列: 逻辑类型: 输入线路数量:1 输出类型:Open Drain 传播延迟时间:650 ns 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装:Reel
MC74HC4060ADTR2 功能描述:计数器移位寄存器 2-6V 14-Stage Binary RoHS:否 制造商:Texas Instruments 计数器类型: 计数顺序:Serial to Serial/Parallel 电路数量:1 封装 / 箱体:SOIC-20 Wide 逻辑系列: 逻辑类型: 输入线路数量:1 输出类型:Open Drain 传播延迟时间:650 ns 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装:Reel
MC74HC4060ADTR2G 功能描述:计数器移位寄存器 2-6V 14-Stage Binary RoHS:否 制造商:Texas Instruments 计数器类型: 计数顺序:Serial to Serial/Parallel 电路数量:1 封装 / 箱体:SOIC-20 Wide 逻辑系列: 逻辑类型: 输入线路数量:1 输出类型:Open Drain 传播延迟时间:650 ns 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装:Reel
MC74HC4060AF 制造商:Rochester Electronics LLC 功能描述:- Bulk