参数资料
型号: NCP1546DG
厂商: ON SEMICONDUCTOR
元件分类: 稳压器
英文描述: 1.5A 170 kHz Low Voltage Buck Regulator
中文描述: SWITCHING REGULATOR, PDSO8
封装: LEAD FREE, SOIC-8
文件页数: 4/15页
文件大小: 212K
代理商: NCP1546DG
NCP1546
http://onsemi.com
12
Figure 15 to Figure 18 show the output ripple of a 5.0 V
to 3.3 V/500 mA regulator using 22
mH inductor and various
capacitor types. At the switching frequency, the low ESR
and ESL make the ceramic capacitors behave capacitively
as shown in Figure 15. Additional paralleled ceramic
capacitors will further reduce the ripple voltage, but
inevitably increase the cost. “POSCAP”, manufactured by
SANYO, is a solid electrolytic capacitor. The anode is
sintered tantalum and the cathode is a highly conductive
polymerized organic semiconductor. TPC series, featuring
low ESR and low profile, is used in the measurement of
Figure 16. It is shown that POSCAP presents a good balance
of capacitance and ESR, compared with a ceramic capacitor.
In this application, the low ESR generates less than 5.0 mV
of ripple and the ESL is almost unnoticeable. The ESL of the
throughhole OSCON capacitor give rise to the inductive
impedance. It is evident from Figure 17 which shows the
step rise of the output ripple on the switch turnon and large
spike on the switch turnoff. The ESL prevents the output
capacitor from quickly charging up the parasitic capacitor of
the inductor when the switch node is pulled below ground
through the catch diode conduction. This results in the spike
associated with the falling edge of the switch node. The D
package tantalum capacitor used in Figure 18 has the same
footprint as the POSCAP, but doubles the height. The ESR
of the tantalum capacitor is apparently higher than the
POSCAP. The electrolytic and tantalum capacitors provide
a lowcost solution with compromised performance. The
reliability of the tantalum capacitor is not a serious concern
for output filtering because the output capacitor is usually
free of surge current and voltage.
Diode Selection
The diode in the buck converter provides the inductor
current path when the power switch turns off. The peak
reverse voltage is equal to the maximum input voltage. The
peak conducting current is clamped by the current limit of
the IC. The average current can be calculated from:
ID(AVG) +
IO(VIN * VO)
VIN
The worse case of the diode average current occurs during
maximum load current and maximum input voltage. For the
diode to survive the short circuit condition, the current rating
of the diode should be equal to the Foldback Current Limit.
See Table 1 for Schottky diodes from ON Semiconductor
which are suggested for use with the NCP1546 regulator.
Inductor Selection
When choosing inductors, one might have to consider
maximum load current, core and copper losses, component
height, output ripple, EMI, saturation and cost. Lower
inductor values are chosen to reduce the physical size of the
inductor. Higher value cuts down the ripple current, core
losses and allows more output current. For most
applications, the inductor value falls in the range between
2.2
mH and 22 mH. The saturation current ratings of the
inductor shall not exceed the IL(PK), calculated according to
IL(PK) + IO )
VO(VIN * VO)
2(fS)(L)(VIN)
The DC current through the inductor is equal to the load
current. The worse case occurs during maximum load
current. Check the vendor’s spec to adjust the inductor value
under current loading. Inductors can lose over 50% of
inductance when it nears saturation.
The core materials have a significant effect on inductor
performance. The ferrite core has benefits of small physical
size, and very low power dissipation. But be careful not to
operate these inductors too far beyond their maximum
ratings for peak current, as this will saturate the core.
Powered Iron cores are low cost and have a more gradual
saturation curve. The cores with an open magnetic path, such
as rod or barrel, tend to generate high magnetic field
radiation. However, they are usually cheap and small. The
cores providing a close magnetic loop, such as potcore and
toroid, generate low electromagnetic interference (EMI).
There are many magnetic component vendors providing
standard product lines suitable for the NCP1546. Table 2
lists three vendors, their products and contact information.
Table 1.
Part Number
VBREAKDOWN (V)
IAVERAGE (A)
V(F) (V) @ IAVERAGE
Package
1N5817
20
1.0
0.45
Axial Lead
1N5818
30
1.0
0.55
Axial Lead
1N5819
40
1.0
0.6
Axial Lead
MBR0520
20
0.5
0.385
SOD123
MBR0530
30
0.5
0.43
SOD123
MBR0540
40
0.5
0.53
SOD123
MBRS120
20
1.0
0.55
SMB
MBRS130
30
1.0
0.395
SMB
MBRS140
40
1.0
0.6
SMB
相关PDF资料
PDF描述
NCP362BMUTBG OVP/OCP + TVS
NCT1008DMT3R2G %2B-1℃ temperature monitor with series resistance cancellation
NCV4275ADS50G 450 mA, 5.0V, LDO w/Reset and Delay
NCV4275ADS50R4G 450 mA, 5.0V, LDO w/Reset and Delay
NCV4275ADT33RKG 450 mA, 3.3 V, LDO w/Reset and Delay
相关代理商/技术参数
参数描述
NCP1546DR2G 功能描述:直流/直流开关调节器 1.5A LOW VOLTAGE REG RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
NCP1546MNR2G 功能描述:直流/直流开关调节器 170 KHZ RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
NCP1547DG 功能描述:直流/直流开关调节器 340 KHZ REGULATOR RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
NCP1547DR2G 功能描述:直流/直流开关调节器 340 KHZ REGULATOR RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
NCP1547MNR2G 功能描述:直流/直流开关调节器 340 KHZ RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5