参数资料
型号: NCP3101BUCK1GEVB
厂商: ON Semiconductor
文件页数: 13/26页
文件大小: 0K
描述: EVAL BOARD FOR NCP3101BUCK1G
设计资源: NCP3101BUCK1 EVB BOM
NCP3101BUCKL1GEVB Gerber Files
NCP3101BUCK1 EVB Schematic
标准包装: 1
主要目的: DC/DC,步降
输出及类型: 1,非隔离
输出电压: 3.3V
电流 - 输出: 6A
输入电压: 13.2V
稳压器拓扑结构: 降压
频率 - 开关: 275kHz
板类型: 完全填充
已供物品:
已用 IC / 零件: NCP3101
其它名称: NCP3101BUCK1GEVBOS
NCP3101C
I RMS + I OUT *
1 )
3
6.02 A + 6 A *
1 )
I PK + I OUT * 1 )
3 6.78 A + 6.0 A * 1 )
L OUT
SlewRate LOUT + 3 1.56 A +
LP tot + LP CU_DC ) LP CU_AC ) LP Core 3
L OUT * F SW
CO RMS + I OUT
3 0.45 A + 6.0 A
ra 2
12
(eq. 7)
26% 2
12
I OUT = Output current
I RMS = Inductor RMS current
ra = Ripple current ratio
ra                        26%
2 2
(eq. 8)
I OUT = Output current
I PK = Inductor peak current
ra = Ripple current ratio
A standard inductor should be found so the inductor will
be rounded to 5.6 m H. The inductor should support an RMS
current of 6.02 A and a peak current of 6.78 A.
The final selection of an output inductor has both
mechanical and electrical considerations. From a
mechanical perspective, smaller inductor values generally
correspond to smaller physical size. Since the inductor is
often one of the largest components in the regulation system,
a minimum inductor value is particularly important in space
constrained applications. From an electrical perspective, the
maximum current slew rate through the output inductor for
a buck regulator is given by Equation 9.
V CC * V OUT 12 V * 3.3 V
5.6 m H
(eq. 9)
L OUT = Output inductance
V CC = Input voltage
V OUT = Output voltage
Equation 9 implies that larger inductor values limit the
regulator ’s ability to slew current through the output
inductor in response to output load transients. Consequently,
output capacitors must supply the load current until the
inductor current reaches the output load current level.
Reduced inductance to increase slew rates results in larger
values of output capacitance to maintain tight output voltage
regulation. In contrast, smaller values of inductance increase
the regulator ’s maximum achievable slew rate and decrease
the necessary capacitance at the expense of higher ripple
current. The peak ? to ? peak ripple current is given by the
following equation:
V OUT 1 * D
I PP + 3
(eq. 10)
3.3 V 1 * 27.5%
1.56 A +
5.6 m H * 275 kHz
I PP = Peak ? to ? peak current of the inductor
L OUT = Output inductance
V OUT = Output voltage
From Equation 10 it is clear that the ripple current
increases as L OUT decreases, emphasizing the trade ? off
between dynamic response and ripple current.
The power dissipation of an inductor falls into two
categories: copper and core losses. Copper losses can be
further categorized into DC losses and AC losses. A good
first order approximation of the inductor losses can be made
using the DC resistance as shown below:
LP CU_DC + I RMS 2 * DCR 3 199 mW + 6.02 2 * 5.5 m W
(eq. 11)
I RMS = Inductor RMS current
DCR = Inductor DC resistance
LP CU_DC = Inductor DC power dissipation
The core losses and AC copper losses will depend on the
geometry of the selected core, core material, and wire used.
Most vendors will provide the appropriate information to
make accurate calculations of the power dissipation, at
which point the total inductor losses can be captured by the
equation below:
(eq. 12)
204 mW + 199 mW ) 2 mW ) 3 mW
LP CU_DC = Inductor DC power dissipation
LP CU_AC = Inductor AC power dissipation
LP Core = Inductor core power dissipation
Output Capacitor Selection
The important factors to consider when selecting an
output capacitor are DC voltage rating, ripple current rating,
output ripple voltage requirements, and transient response
requirements.
The output capacitor must be rated to handle the ripple
current at full load with proper derating. The RMS ratings
given in datasheets are generally for lower switching
frequency than used in switch mode power supplies, but a
multiplier is usually given for higher frequency operation.
The RMS current for the output capacitor can be calculated
below:
ra 26%
(eq. 13)
12 12
Co RMS = Output capacitor RMS current
I OUT = Output current
ra = Ripple current ratio
The maximum allowable output voltage ripple is a
combination of the ripple current selected, the output
capacitance selected, the Equivalent Series Inductance
(ESL), and Equivalent Series Resistance (ESR).
The main component of the ripple voltage is usually due
D
F SW
= Duty ratio
= Switching frequency
to the ESR of the output capacitor and the capacitance
selected, which can be calculated as shown in Equation 14:
http://onsemi.com
13
相关PDF资料
PDF描述
BAS70-06-7 DIODE SCHTKY 200MW 70V SOT23-3
T95D107K016LSSS CAP TANT 100UF 16V 10% 2917
K2500EH70RP2 SIDAC 250V 1A TO-92
VE-B3L-CX-F3 CONVERTER MOD DC/DC 28V 75W
ASPI-0412S-8R2N-T3 INDUCTOR POWER MINI 8.2UH 0412
相关代理商/技术参数
参数描述
NCP3101BUCK2GEVB 功能描述:电源管理IC开发工具 NCP3101 DEMO BD 55X25MM RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
NCP3101CMNTXG 功能描述:直流/直流开关调节器 INTEGRATED SWITCHER RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
NCP3101MNTXG 功能描述:直流/直流开关调节器 6A SYNC BUCK CNVERTR RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
NCP3102BMNTXG 功能描述:直流/直流开关调节器 10A SYNC BUCK CNVRTR RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
NCP3102BUCK1GEVB 功能描述:电源管理IC开发工具 NCP3102 DEMO BD 100X110M RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V