参数资料
型号: PIC16C711-20I/SS
厂商: Microchip Technology
文件页数: 141/177页
文件大小: 0K
描述: IC MCU OTP 1KX14 A/D 20SSOP
产品培训模块: Asynchronous Stimulus
标准包装: 67
系列: PIC® 16C
核心处理器: PIC
芯体尺寸: 8-位
速度: 20MHz
外围设备: 欠压检测/复位,POR,WDT
输入/输出数: 13
程序存储器容量: 1.75KB(1K x 14)
程序存储器类型: OTP
RAM 容量: 68 x 8
电压 - 电源 (Vcc/Vdd): 4 V ~ 6 V
数据转换器: A/D 4x8b
振荡器型: 外部
工作温度: -40°C ~ 85°C
封装/外壳: 20-SSOP(0.209",5.30mm 宽)
包装: 管件
配用: 309-1016-ND - ADAPTER 20-SSOP TO 18-DIP
PIC16C71X
DS30272A-page 66
1997 Microchip Technology Inc.
8.8
Power-down Mode (SLEEP)
Power-down mode is entered by executing a SLEEP
instruction.
If enabled, the Watchdog Timer will be cleared but
keeps running, the PD bit (STATUS<3>) is cleared, the
TO (STATUS<4>) bit is set, and the oscillator driver is
turned off. The I/O ports maintain the status they had,
before the SLEEP instruction was executed (driving
high, low, or hi-impedance).
For lowest current consumption in this mode, place all
I/O pins at either VDD, or VSS, ensure no external cir-
cuitry is drawing current from the I/O pin, power-down
the A/D, disable external clocks. Pull all I/O pins, that
are hi-impedance inputs, high or low externally to avoid
switching currents caused by oating inputs. The
T0CKI input should also be at VDD or VSS for lowest
current consumption. The contribution from on-chip
pull-ups on PORTB should be considered.
The MCLR pin must be at a logic high level (VIHMC).
8.8.1
WAKE-UP FROM SLEEP
The device can wake up from SLEEP through one of
the following events:
1.
External reset input on MCLR pin.
2.
Watchdog
Timer
Wake-up
(if
WDT
was
enabled).
3.
Interrupt from INT pin, RB port change, or some
Peripheral Interrupts.
External MCLR Reset will cause a device reset. All
other events are considered a continuation of program
execution and cause a "wake-up". The TO and PD bits
in the STATUS register can be used to determine the
cause of device reset. The PD bit, which is set on
power-up, is cleared when SLEEP is invoked. The TO bit
is cleared if a WDT time-out occurred (and caused
wake-up).
The following peripheral interrupts can wake the device
from SLEEP:
1.
TMR1 interrupt. Timer1 must be operating as
an asynchronous counter.
2.
A/D conversion (when A/D clock source is RC).
Other peripherals cannot generate interrupts since dur-
ing SLEEP, no on-chip Q clocks are present.
When the SLEEP instruction is being executed, the next
instruction (PC + 1) is pre-fetched. For the device to
wake-up through an interrupt event, the corresponding
interrupt enable bit must be set (enabled). Wake-up is
regardless of the state of the GIE bit. If the GIE bit is
clear (disabled), the device continues execution at the
instruction after the SLEEP instruction. If the GIE bit is
set (enabled), the device executes the instruction after
the SLEEP instruction and then branches to the inter-
rupt address (0004h). In cases where the execution of
the instruction following SLEEP is not desirable, the
user should have a NOP after the SLEEP instruction.
8.8.2
WAKE-UP USING INTERRUPTS
When global interrupts are disabled (GIE cleared) and
any interrupt source has both its interrupt enable bit
and interrupt ag bit set, one of the following will occur:
If the interrupt occurs before the the execution of
a SLEEP instruction, the SLEEP instruction will
complete as a NOP. Therefore, the WDT and WDT
postscaler will not be cleared, the TO bit will not
be set and PD bits will not be cleared.
If the interrupt occurs during or after the execu-
tion of a SLEEP instruction, the device will immedi-
ately wake up from sleep . The SLEEP instruction
will be completely executed before the wake-up.
Therefore, the WDT and WDT postscaler will be
cleared, the TO bit will be set and the PD bit will
be cleared.
Even if the ag bits were checked before executing a
SLEEP
instruction, it may be possible for flag bits to
become set before the SLEEP instruction completes. To
determine whether a SLEEP instruction executed, test
the PD bit. If the PD bit is set, the SLEEP instruction was
executed as a NOP.
To ensure that the WDT is cleared, a CLRWDT instruc-
tion should be executed before a SLEEP instruction.
相关PDF资料
PDF描述
GRM319R61C105KAA3D CAP CER 1UF 16V 10% X5R 1206
GRM2196R1H201JZ01D CAP CER 200PF 50V 5% R2H 0805
PIC16LC715-04/SS IC MCU OTP 2KX14 A/D PWM 20SSOP
VI-J2Z-IY-B1 CONVERTER MOD DC/DC 2V 20W
PIC16C715T-04/SS IC MCU OTP 2KX14 A/D 20SSOP
相关代理商/技术参数
参数描述
PIC16C711-20P 制造商:Microchip Technology Inc 功能描述:IC PIC16C711-20P S40004-RL4 ((NS))
PIC16C711T-04/SO 功能描述:8位微控制器 -MCU 1.75KB 68 RAM 13 I/O 4MHz SOIC18 RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC16C711T-04/SS 功能描述:8位微控制器 -MCU 1.75KB 68 RAM 13 I/O 4MHz SSOP20 RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC16C711T-04E/SO 功能描述:8位微控制器 -MCU 1.75KB 68 RAM 13 I/O 4MHz Ext Temp SOIC18 RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC16C711T-04E/SS 功能描述:8位微控制器 -MCU 1.75KB 68 RAM 13 I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT