参数资料
型号: ST92F120V6T
厂商: STMICROELECTRONICS
元件分类: 微控制器/微处理器
英文描述: 16-BIT, FLASH, 24 MHz, MICROCONTROLLER, PQFP64
封装: TQFP-64
文件页数: 13/313页
文件大小: 4439K
代理商: ST92F120V6T
第1页第2页第3页第4页第5页第6页第7页第8页第9页第10页第11页第12页当前第13页第14页第15页第16页第17页第18页第19页第20页第21页第22页第23页第24页第25页第26页第27页第28页第29页第30页第31页第32页第33页第34页第35页第36页第37页第38页第39页第40页第41页第42页第43页第44页第45页第46页第47页第48页第49页第50页第51页第52页第53页第54页第55页第56页第57页第58页第59页第60页第61页第62页第63页第64页第65页第66页第67页第68页第69页第70页第71页第72页第73页第74页第75页第76页第77页第78页第79页第80页第81页第82页第83页第84页第85页第86页第87页第88页第89页第90页第91页第92页第93页第94页第95页第96页第97页第98页第99页第100页第101页第102页第103页第104页第105页第106页第107页第108页第109页第110页第111页第112页第113页第114页第115页第116页第117页第118页第119页第120页第121页第122页第123页第124页第125页第126页第127页第128页第129页第130页第131页第132页第133页第134页第135页第136页第137页第138页第139页第140页第141页第142页第143页第144页第145页第146页第147页第148页第149页第150页第151页第152页第153页第154页第155页第156页第157页第158页第159页第160页第161页第162页第163页第164页第165页第166页第167页第168页第169页第170页第171页第172页第173页第174页第175页第176页第177页第178页第179页第180页第181页第182页第183页第184页第185页第186页第187页第188页第189页第190页第191页第192页第193页第194页第195页第196页第197页第198页第199页第200页第201页第202页第203页第204页第205页第206页第207页第208页第209页第210页第211页第212页第213页第214页第215页第216页第217页第218页第219页第220页第221页第222页第223页第224页第225页第226页第227页第228页第229页第230页第231页第232页第233页第234页第235页第236页第237页第238页第239页第240页第241页第242页第243页第244页第245页第246页第247页第248页第249页第250页第251页第252页第253页第254页第255页第256页第257页第258页第259页第260页第261页第262页第263页第264页第265页第266页第267页第268页第269页第270页第271页第272页第273页第274页第275页第276页第277页第278页第279页第280页第281页第282页第283页第284页第285页第286页第287页第288页第289页第290页第291页第292页第293页第294页第295页第296页第297页第298页第299页第300页第301页第302页第303页第304页第305页第306页第307页第308页第309页第310页第311页第312页第313页
11/313
ST92F120 - GENERAL INFORMATION
Figure 3. CMOS basic inverter
When an input is kept at logic zero, the N-channel
transistor is off, while the P-channel is on and can
conduct. The opposite occurs when an input is
kept at logic one. CMOS transistors are essentially
linear devices with relatively broad switching
points. During commutation, the input passes
through midsupply, and there is a region of input
voltage values where both P and N-channel tran-
sistors are on. Since normally the transitions are
fast, there is a very short time in which a current
can flow: once the switching is completed there is
no longer current. This phenomenon explains why
the overall current depends on the switching rate:
the consumption is directly proportional to the
number of transistors inside the device which are
in the linear region during transitions, charging and
discharging internal capacitances.
In order to avoid extra power supply current, it is
important to bias input pins properly when not
used. In fact, if the input impedance is very high,
pins can float, when not connected, either to a
midsupply level or can oscillate (injecting noise in
the device).
Depending on the specific configuration of each
I/O pin on different ST9 devices, it can be more or
less critical to leave unused pins floating. For this
reason, on most pins, the configuration after RE-
SET enables an internal weak pull-up transistor in
order to avoid floating conditions. For other pins
this is intrinsically forbidden, like for the true open-
drain pins. In any case, the application software
must program the right state for unused pins to
avoid conflicts with external circuitry (whichever it
is: pull-up, pull-down, floating, etc.).
The suggested method of terminating unused I/O
is to connect an external individual pull-up or pull-
down for each pin, even though initialization soft-
ware can force outputs to a specified and defined
value, during a particular phase of the RESET rou-
tine there could be an undetermined status at the
input section.
Usage of pull-ups and/or pull-downs is preferable
in place of direct connection to VDD or VSS. If pull-
up or pull-down resistors are used, inputs can be
forced for test purposes to a different value, and
outputs can be programmed to both digital levels
without generating high current drain due to the
conflict.
Anyway, during system verification flow, attention
must be paid to reviewing the connection of each
pin, in order to avoid potential problems.
1.2.4 Avoidance of Pin Damage
Although integrated circuit data sheets provide the
user with conservative limits and conditions in or-
der to prevent damage, sometimes it is useful for
the hardware system designer to know the internal
failure mechanisms: the risk of exposure to illegal
voltages and conditions can be reduced by smart
protection design.
It is not possible to classify and to predict all the
possible damage resulting from violating maxi-
mum ratings and conditions, due to the large
number of variables that come into play in defining
the failures: in fact, when an overvoltage condition
is applied, the effects on the device can vary sig-
nificantly depending on lot-to-lot process varia-
tions, operating temperature, external interfacing
of the ST9 with other devices, etc.
In the following sections, background technical in-
formation is given in order to help system design-
ers to reduce risk of damage to the ST9 device.
1.2.4.1 Electrostatic Discharge and Latchup
CMOS integrated circuits are generally sensitive
to exposure to high voltage static electricity, which
can induce permanent damage to the device: a
typical failure is the breakdown of thin oxides,
which causes high leakage current and sometimes
shorts.
Latchup is another typical phenomenon occurring
in integrated circuits: unwanted turning on of para-
sitic bipolar structures, or silicon-controlled rectifi-
ers (SCR), may overheat and rapidly destroy the
device. These unintentional structures are com-
posed of P and N regions which work as emitters,
bases and collectors of parasitic bipolar transis-
tors: the bulk resistance of the silicon in the wells
and substrate act as resistors on the SCR struc-
ture. Applying voltages below VSS or above VDD,
and when the level of current is able to generate a
P
N
IN
OUT
VDD
VSS
1
相关PDF资料
PDF描述
ST92F120V9T 16-BIT, FLASH, 24 MHz, MICROCONTROLLER, PQFP64
ST92F124R1T6 16-BIT, FLASH, 24 MHz, MICROCONTROLLER, PQFP64
ST92F150JDV1QCE 16-BIT, FLASH, 5 MHz, MICROCONTROLLER, PQFP100
ST92F250CV2QC 16-BIT, FLASH, 24 MHz, MICROCONTROLLER, PQFP100
ST92F124R9T6 16-BIT, FLASH, 24 MHz, MICROCONTROLLER, PQFP64
相关代理商/技术参数
参数描述
ST92F120V9Q7 功能描述:8位微控制器 -MCU RO 511-ST92F150CV1QB RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
ST92F124R9TB 功能描述:8位微控制器 -MCU Flash 64K SCI/SPI/I2 RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
ST92F124V1QB 功能描述:8位微控制器 -MCU Flash 128K 2SCI/SPI RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
ST92F124V1T6 功能描述:8位微控制器 -MCU 8/16-BIT SINGLE VOLT RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
ST92F124V1T6TR 制造商:STMicroelectronics 功能描述: