参数资料
型号: TISP7400H3SL
厂商: Bourns Inc.
文件页数: 11/12页
文件大小: 0K
描述: SURGE SUPP 300V BIDIR 3-SL
产品变化通告: Product Obsolescence Jun/2008
标准包装: 50
电压 - 击穿: 400V
电压 - 断路: 300V
电压 - 导通状态: 5V
电流 - 峰值脉冲(8 x 20µs): 350A
电流 - 峰值脉冲(10 x 1000µs): 100A
电流 - 保持 (Ih): 150mA
元件数: 3
电容: 62pF
封装/外壳: 径向 - 3 引线
包装: 管件
TISP7xxxH3SL Overvoltage Protector Series
APPLICATIONS INFORMATION
AC Power Testing
The protector can withstand the G return currents applied for times not exceeding those shown in Figure 8. Currents that exceed these times
must be terminated or reduced to avoid protector failure. Fuses, PTC (Positive Temperature Coefficient) resistors and fusible resistors are
overcurrent protection devices which can be used to reduce the current flow. Protective fuses may range from a few hundred milliamperes to
one ampere. In some cases, it may be necessary to add some extra series resistance to prevent the fuse opening during impulse testing. The
current versus time characteristic of the overcurrent protector must be below the line shown in Figure 8. In some cases there may be a further
time limit imposed by the test standard (e.g. UL 1459 wiring simulator failure).
Capacitance
The protector characteristic off-state capacitance values are given for d.c. bias voltage, VD , values of 0, -1 V, -2 V and -50 V. Where possible,
values are also given for -100 V. Values for other voltages may be calculated by multiplying the VD = 0 capacitance value by the factor given in
Figure 6. Up to 10 MHz, the capacitance is essentially independent of frequency. Above 10 MHz, the effective capacitance is strongly
dependent on connection inductance. For example, a printed wiring (PW) trace of 10 cm could create a circuit resonance with the device
capacitance in the region of 50 MHz. In many applications, the typical conductor bias voltages will be about -2 V and -50 V. Figure 7 shows the
differential (line unbalance) capacitance caused by biasing one protector at -2 V and the other at -50 V.
Normal System Voltage Levels
The protector should not clip or limit the voltages that occur in normal system operation. For unusual conditions, such as ringing without the
line connected, some degree of clipping is permissible. Under this condition, about 10 V of clipping is normally possible without activating the
ring trip circuit.
Figure 9 allows the calculation of the protector VDRM value at temperatures below 25 ° C. The calculated value should not be less than the
maximum normal system voltages. The TISP7290H3, with a VDRM of 230 V, can be used for the protection of ring generators producing
105 V rms of ring on a battery voltage of -58 V. The peak ring voltage will be 58 + 1.414*105 = 206.5 V. However, this is the open circuit voltage
and the connection of the line and its equipment will reduce the peak voltage.
For the extreme case of an unconnected line, the temperature at which clipping begins can be calculated using the data from Figure 9. To
possibly clip, the VDRM value has to be 206.5 V. This is a reduction of the 230 V 25 ° C VDRM value by a factor of 206.5/230 = 0.90. Figure 9
shows that a 0.90 reduction will occur below an ambient temperature of -40 ° C. For this example, the TISP7290H3 will allow normal equipment
operation, even on an open-circuit line, down to below -40 ° C .
JESD51 Thermal Measurement Method
To standardize thermal measurements, the EIA (Electronic Industries Alliance) has created the JESD51 standard. Part 2 of the standard
(JESD51-2, 1995) describes the test environment. This is a 0.0283 m 3 (1 ft 3) cube which contains the test PCB (Printed Circuit Board)
horizontally mounted at the center. Part 3 of the standard (JESD51-3, 1996) defines two test PCBs for surface mount components; one for
packages smaller than 27 mm (1.06 ’’) on a side and the other for packages up to 48 mm (189 ’’). The thermal measurements used the smaller
76.2 mm x 114.3 mm (3.0 ’’ x 4.5 ’’) PCB. The JESD51-3 PCBs are designed to have low effective thermal conductivity (high thermal resis-
tance) and represent a worse case condition. The PCBs used in the majority of applications will achieve lower values of thermal resistance and
so can dissipate higher power levels than indicated by the JESD51 values.
MARCH 1999 - REVISED JANUARY 2007
Specifications are subject to change without notice.
Customers should verify actual device performance in their specific applications.
相关PDF资料
PDF描述
TISP9110LDMR-S SURGE PROT THYRIST NEG/POS SLIC
TL7726QDG4 IC HEX CLAMPING CIRCUIT 8-SOIC
TLK2501EVM EVALUATON MOD FOR TLK2501
TLV320AIC23EVM2 EVAL MOD FOR TLV320AIC23/DAC23
TM2P-10271 2PRO PPTC VARISTOR 270VDC 0.15A
相关代理商/技术参数
参数描述
TISP7400H3SL-S 功能描述:硅对称二端开关元件 Triple Element Bidirectional RoHS:否 制造商:Bourns 转折电流 VBO:40 V 最大转折电流 IBO:800 mA 不重复通态电流: 额定重复关闭状态电压 VDRM:25 V 关闭状态漏泄电流(在 VDRM IDRM 下): 保持电流(Ih 最大值):50 mA 开启状态电压:5 V 关闭状态电容 CO:120 pF 最大工作温度:+ 150 C 安装风格:SMD/SMT 封装 / 箱体:DO-214AA
TISP7XXXF3 制造商:BOURNS 制造商全称:Bourns Electronic Solutions 功能描述:MEDIUM & HIGH-VOLTAGE TRIPLE ELEMENT BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
TISP7XXXH3SL 制造商:BOURNS 制造商全称:Bourns Electronic Solutions 功能描述:TRIPLE ELEMENT BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
TISP8200HDMR-S 功能描述:SCR Buffered P-Gate SCR Dual RoHS:否 制造商:STMicroelectronics 最大转折电流 IBO:480 A 额定重复关闭状态电压 VDRM:600 V 关闭状态漏泄电流(在 VDRM IDRM 下):5 uA 开启状态 RMS 电流 (It RMS): 正向电压下降:1.6 V 栅触发电压 (Vgt):1.3 V 最大栅极峰值反向电压:5 V 栅触发电流 (Igt):35 mA 保持电流(Ih 最大值):75 mA 安装风格:Through Hole 封装 / 箱体:TO-220 封装:Tube
TISP8200MDR 功能描述:SCR RoHS:否 制造商:STMicroelectronics 最大转折电流 IBO:480 A 额定重复关闭状态电压 VDRM:600 V 关闭状态漏泄电流(在 VDRM IDRM 下):5 uA 开启状态 RMS 电流 (It RMS): 正向电压下降:1.6 V 栅触发电压 (Vgt):1.3 V 最大栅极峰值反向电压:5 V 栅触发电流 (Igt):35 mA 保持电流(Ih 最大值):75 mA 安装风格:Through Hole 封装 / 箱体:TO-220 封装:Tube