
TRF2056
LOW VOLTAGE 1.2GHz FRACTIONALN/INTEGERN SYNTHESIZER
SLWS111– NOVEMBER 2000
18
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
PRINCIPLES OF OPERATION
Table 4. Main PHP Fractional-N Pulse-Widths and Areas for 3/8 Channel
NF = 3, FMOD = 8
ACCUMULATOR
STATE
MAIN PHP FRACTIONAL PULSE WIDTH
(ps)
MAIN PHP FRACTIONAL AREA
(ps X AMPS)
3
3 x
PW–Mean = 393.558
393.558 ps x 500
A = 0.196779
6
6 x
PW–Mean = 787.116
787.116 ps x 500
A = 0.393558
1
1 x
PW–Mean = 131.186
131.186 ps x 500
A = 0.065593
4
4 x
PW–Mean = 524.744
524.744 ps x 500
A = 0.262372
7
7 x
PW–Mean = 918.302
918.302 ps x 500
A = 0.459151
2
2 x
PW–Mean = 262.372
262.372 ps x 500
A = 0.131186
5
5 x
PW–Mean = 655.930
655.930 ps x 500
A = 0.327965
0
0 x
PW–Mean = 0
0 ps x 500
A = 0
Table 4 also shows the area of the fractional-N portion of the main PHP charge-pump waveform.1
2.
Determine the pulse width of the compensation charge-pump output waveform.
Comp
PW +
1
f
Ref
+
1
19.44 MHz
+ 51.440 ns
3.
Determine the fundamental compensation charge-pump current magnitude using the fundamental main
PHP fractional area.
Comp
Mag +
Frac
Area
Comp
PW
+
0.065593 psA
51.440 ns
+ 1.275 mA
Table 5 shows the magnitude of the compensation pulse as a function of the fractional accumulator.
Table 5. Compensation Pulse Magnitudes for 3/8 Channel
NF = 3, FMOD = 8
Accumulator
Numerator
Compensation Pulse
Magnitude (
A)
3
3 x 1.275 = 3.825
6
6 x 1.275 = 7.651
1
1 x 1.275 = 1.275
4
4 x 1.275 = 5.101
7
7 x 1.275 = 8.926
2
2 x 1.275 = 2.550
5
5 x 1.275 = 6.376
0
0 x 1.275 = 0
4.
Using the result of step 3, determine the value of RF to give the fundamental compensation pulse
magnitude.
RF (k
W) +
25
Comp
Mag
(
mA)
+ 25
1.275
+ 19.6 kW