参数资料
型号: AD9709ASTZ
厂商: Analog Devices Inc
文件页数: 15/32页
文件大小: 0K
描述: IC DAC 8BIT DUAL 125MSPS 48-LQFP
产品培训模块: Data Converter Fundamentals
DAC Architectures
标准包装: 1
系列: TxDAC+®
设置时间: 35ns
位数: 8
数据接口: 并联
转换器数目: 2
电压电源: 模拟和数字
功率耗散(最大): 450mW
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 48-LQFP
供应商设备封装: 48-LQFP(7x7)
包装: 托盘
输出数目和类型: 4 电流,单极;4 电流,双极
采样率(每秒): 125M
产品目录页面: 785 (CN2011-ZH PDF)
配用: AD9709-EBZ-ND - BOARD EVAL FOR AD9709
AD9709
Rev. B | Page 22 of 32
APPLICATIONS INFORMATION
QUADRATURE AMPLITUDE MODULATION (QAM)
USING THE AD9709
QAM is one of the most widely used digital modulation
schemes in digital communications systems. This modulation
technique can be found in FDM as well as spread spectrum
(that is, CDMA) based systems. A QAM signal is a carrier
frequency that is modulated in both amplitude (that is, AM
modulation) and phase (that is, PM modulation). It can be
generated by independently modulating two carriers of identical
frequency but with a 90° phase difference. This results in an
in-phase (I) carrier component and a quadrature (Q) carrier
component at a 90° phase shift with respect to the I component.
The I and Q components are then summed to provide a QAM
signal at the specified carrier frequency.
A common and traditional implementation of a QAM
modulator is shown in Figure 43. The modulation is performed
in the analog domain in which two DACs are used to generate
the baseband I and Q components. Each component is then
typically applied to a Nyquist filter before being applied to a
quadrature mixer. The matching Nyquist filters shape and limit
each component’s spectral envelope while minimizing intersymbol
interference. The DAC is typically updated at the QAM symbol
rate, or at a multiple of the QAM symbol rate if an interpolating
filter precedes the DAC. The use of an interpolating filter typically
eases the implementation and complexity of the analog filter,
which can be a significant contributor to mismatches in gain
and phase between the two baseband channels. A quadrature
mixer modulates the I and Q components with the in-phase and
quadrature carrier frequencies and then sums the two outputs
to provide the QAM signal.
QUADRATURE
MODULATOR
DAC
8
DAC
CARRIER
FREQUENCY
NYQUIST
FILTERS
TO
MIXER
DSP
OR
ASIC
Σ
90°
00
60
6-
04
4
Figure 43. Typical Analog QAM Architecture
In this implementation, it is much more difficult to maintain
proper gain and phase matching between the I and Q channels.
The circuit implementation shown in Figure 44 helps improve
the matching between the I and Q channels, and it shows a path
for upconversion using the AD8346 quadrature modulator. The
AD9709 provides both I and Q DACs with a common reference
that will improve the gain matching and stability. RCAL can be
used to compensate for any mismatch in gain between the two
channels. The mismatch may be attributed to the mismatch
between RSET1 and RSET2, the effective load resistance of each
channel, and/or the voltage offset of the control amplifier in each
DAC. The differential voltage outputs of both DACs in the
AD9709 are fed into the respective differential inputs of the
AD8346 via matching networks.
IOUTA
IOUTB
IOUTA
IOUTB
DCOM1/
DCOM2
SLEEP
DVDD1/
DVDD2
AVDD
VPBF
BBIP
BBIN
BBQP
BBQN
LOIP
LOIN
VOUT
WRT1/IQWRT
FSADJ1
ACOM
+
SPECTRUM ANALYZER
AD8346
CLK1/IQCLK
PO
R
T
Q
P
O
R
T
I
D
IG
ITA
L
IN
TE
R
F
A
C
E
I
DAC
WRT2/IQSEL
FSADJ2
MODE
REFIO
CFILTER
VDIFF = 1.82V p-p
RL
RB
RL
LA
RL
CA
RB
RA
AD9709
RL
RB
RA
0 TO IOUTFS
AD8346
AVDD
AD976x
AVDD
TEKTRONIX
AWG2021
WITH
OPTION 4
I DAC
LATCH
Q DAC
LATCH
Q
DAC
2k
20k
0.1F
NOTES
1. DAC FULL-SCALE OUTPUT CURRENT = IOUTFS.
2. RA, RB, AND RL ARE THIN FILM RESISTOR NETWORKS
WITH 0.1% MATCHING, 1% ACCURACY AVAILABLE
FROM OHMTEK ORNXXXXD SERIES OR EQUIVALENT.
VMOD
VDAC
DIFFERENTIAL
RLC FILTER
RL = 200
RA = 2500
RB = 500
RP = 200
CA = 280pF
CB = 45pF
LA = 10H
IOUTFS = 11mA
AVDD = 5.0V
VCM = 1.2V
RL
CB
0.1F
RA
CB
PHASE
SPLITTER
ROHDE & SCHWARZ
FSEA30B
OR EQUIVALENT
ROHDE & SCHWARZ
SIGNAL GENERATOR
00
60
6-
0
45
256
22nF
2k
20k
256
22nF
Figure 44. Baseband QAM Implementation Using an AD9709 and AD8346
相关PDF资料
PDF描述
MS27467T25F19PD CONN PLUG 19POS STRAIGHT W/PINS
MS27466T25B29SB CONN RCPT 29POS WALL MT W/SCKT
AD7392ARZ IC DAC 12BIT PARALLEL 3V 20-SOIC
VE-J03-MZ-F4 CONVERTER MOD DC/DC 24V 25W
VE-J03-MZ-F3 CONVERTER MOD DC/DC 24V 25W
相关代理商/技术参数
参数描述
AD9709ASTZ1 制造商:AD 制造商全称:Analog Devices 功能描述:8-Bit, 125 MSPS, Dual TxDAC Digital-to-Analog Converter
AD9709ASTZKL1 制造商:Rochester Electronics LLC 功能描述: 制造商:Analog Devices 功能描述:
AD9709ASTZRL 功能描述:IC DAC 8BIT DUAL 125MSPS 48LQFP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 数模转换器 系列:TxDAC+® 产品培训模块:LTC263x 12-, 10-, and 8-Bit VOUT DAC Family 特色产品:LTC2636 - Octal 12-/10-/8-Bit SPI VOUT DACs with 10ppm/°C Reference 标准包装:91 系列:- 设置时间:4µs 位数:10 数据接口:MICROWIRE?,串行,SPI? 转换器数目:8 电压电源:单电源 功率耗散(最大):2.7mW 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:14-WFDFN 裸露焊盘 供应商设备封装:14-DFN-EP(4x3) 包装:管件 输出数目和类型:8 电压,单极 采样率(每秒):*
AD9709ASTZRL1 制造商:AD 制造商全称:Analog Devices 功能描述:8-Bit, 125 MSPS, Dual TxDAC Digital-to-Analog Converter
AD9709-EB 制造商:Analog Devices 功能描述: 制造商:Rochester Electronics LLC 功能描述: