参数资料
型号: ADP1864AUJZ-R7
厂商: Analog Devices Inc
文件页数: 10/16页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM TSOT23-6
产品培训模块: Power Line Monitoring
标准包装: 1
PWM 型: 电流模式
输出数: 1
频率 - 最大: 650kHz
占空比: 100%
电源电压: 3.15 V ~ 14 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 125°C
封装/外壳: SOT-23-6 细型,TSOT-23-6
包装: 标准包装
产品目录页面: 791 (CN2011-ZH PDF)
配用: ADP1864-EVALZ-ND - BOARD EVALUATION ADP1864
其它名称: ADP1864AUJZ-R7DKR

ADP1864
Data Sheet
I LOAD ( MAX ) +
APPLICATIONS INFORMATION
ADIsimPower DESIGN TOOL
The ADP1864 is supported by ADIsimPower design tool set.
ADIsimPower is a collection of tools that produce complete
R SENSE ( MIN ) =
SF × PCSV
? I ( PEAK )
2
(4)
power designs optimized for a specific design goal. The tools
enable the user to generate a full schematic, bill of materials,
and calculate performance in minutes. ADIsimPower can
optimize designs for cost, area, efficiency, and parts count
while taking into consideration the operating conditions and
limitations of the IC and all real external components. For
more information about ADIsimPower design tools, refer to
www.analog.com/ADIsimPower . The tool set is available from
this website, and users can also request an unpopulated board
through the tool.
DUTY CYCLE
To determine the worst-case inductor ripple current, output
voltage ripple, and slope compensation factor, establish the
system maximum and minimum duty cycle. The duty cycle is
calculated by the equation
where SF is the slope factor correction ratio, taken from
Figure 13, at the system maximum duty cycle (minimum
input voltage).
1.05
0.95
0.85
0.75
0.65
0.55
0.45
0.35
Duty Cycle ( DC ) =
V OUT + V D
V IN + V D
(1)
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
DUTY CYCLE
Figure 13. Slope Factor (SF) vs. Duty Cycle
0.9
1.0
( V ? V OUT ) ? V + V D ?
× ? OUT ?
? I ( PEAK ) =
(5)
? V
L × f
+ V D
?
?
R SENSE ( MIN ) =
PCSV
? I ( PEAK )
I LOAD ( MAX ) +
where V D is the diode forward drop.
A typical Schottky diode has a forward voltage drop of 0.5 V.
RIPPLE CURRENT
Choose the peak-to-peak inductor ripple current between 20%
and 40% of the maximum load current at the system’s highest
input voltage. A good starting point for a design is to pick the
peak-to-peak ripple current at 30% of the load current.
Δ I (PEAK) = 0.3 × I LOAD(MAX) (2)
SENSE RESISTOR
Choose the sense resistor value to provide the desired current
limit. The internal current comparator measures the peak
current (sum of load current and positive inductor ripple
current) and compares it against the current limit threshold.
The current sense resistor value is calculated by the equation
(3)
2
where PCSV is the peak current sense voltage, typically 0.125 V.
INDUCTOR VALUE
The inductor value choice is important because it dictates the
inductor ripple and, therefore, the voltage ripple at the output.
When operating the part at >40% duty cycle, keep the inductor
value low enough for the slope compensation to remain
effective.
The inductor ripple current is inversely related to the
inductor value.
IN
?
IN
where f is the oscillator frequency.
Smaller inductor values are usually less expensive, but increase
the ripple current and the output voltage ripple. Too large an
inductor value results in added expenses and can impede effective
load transient responses at >40% duty cycle because it reduces
the effect of slope compensation.
Start with the highest input voltage, and assuming the ripple
current is 30% of the maximum load current,
? V + V D
? V
?
?
To ensure the design provides the required output load current
over all system conditions, consider the variation in PCSV over
temperature (see the Specifications section) as well as increases
L =
( V IN ? V OUT )
0 . 3 × I LOAD ( MAX ) × f
× ? OUT
? IN + V D
?
?
(6)
in ripple current due to inductor tolerance.
If the system is being operated with >40% duty cycle, incor-
porate the slope compensation factor into the calculation.
From this starting point, modify the inductance to obtain
the right balance of size, cost, and output voltage ripple, while
maintaining the inductor ripple current between 20% and 40%
of the maximum load current.
Rev. C | Page 10 of 16
相关PDF资料
PDF描述
ADP1871ACPZ-0.6-R7 IC REG CTRLR BUCK PWM CM 10LFCSP
ADP1873ARMZ-0.3-R7 IC REG CTRLR BUCK PWM CM 10-MSOP
ADP1875ARQZ-0.3-R7 IC REG CTRLR BUCK PWM CM 16-QSOP
ADP1876ACPZ-R7 IC REG CTRLR BUCK PWM CM 32LFCSP
ADP1877ACPZ-R7 IC REG CTRLR BUCK PWM CM 32LFCSP
相关代理商/技术参数
参数描述
ADP1864-BL-EVALZ 功能描述:EVAL BLANK ADISIMPOWER ADP1864 RoHS:是 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:- 标准包装:1 系列:- 主要目的:DC/DC,步降 输出及类型:1,非隔离 功率 - 输出:- 输出电压:3.3V 电流 - 输出:3A 输入电压:4.5 V ~ 28 V 稳压器拓扑结构:降压 频率 - 开关:250kHz 板类型:完全填充 已供物品:板 已用 IC / 零件:L7981 其它名称:497-12113STEVAL-ISA094V1-ND
ADP1864-EVAL 功能描述:电源管理IC开发工具 03-5 Amp non synchronous buck controller RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
ADP1864-EVALZ 功能描述:BOARD EVALUATION ADP1864 RoHS:是 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:- 标准包装:1 系列:- 主要目的:DC/DC,步降 输出及类型:1,非隔离 功率 - 输出:- 输出电压:3.3V 电流 - 输出:3A 输入电压:4.5 V ~ 28 V 稳压器拓扑结构:降压 频率 - 开关:250kHz 板类型:完全填充 已供物品:板 已用 IC / 零件:L7981 其它名称:497-12113STEVAL-ISA094V1-ND
ADP1870 制造商:AD 制造商全称:Analog Devices 功能描述:Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADP1870-0.3-EVALZ 功能描述:BOARD EVAL FOR ADP1870-0.3 RoHS:是 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:* 标准包装:1 系列:- 主要目的:DC/DC,步降 输出及类型:1,非隔离 功率 - 输出:- 输出电压:3.3V 电流 - 输出:3A 输入电压:4.5 V ~ 28 V 稳压器拓扑结构:降压 频率 - 开关:250kHz 板类型:完全填充 已供物品:板 已用 IC / 零件:L7981 其它名称:497-12113STEVAL-ISA094V1-ND