参数资料
型号: HIP6311ACBZA-T
厂商: Intersil
文件页数: 15/16页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM 20-SOIC
标准包装: 1,000
PWM 型: 控制器
输出数: 4
频率 - 最大: 1.5MHz
电源电压: 4.75 V ~ 5.25 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: 0°C ~ 70°C
封装/外壳: 20-SOIC(0.295",7.50mm 宽)
包装: 带卷 (TR)
HIP6311A
Considerations section. With all else fixed, decreasing the
inductance could increase the power dissipated in the
MOSFETs by 30%.
1.0
the high frequency decoupling and bulk capacitors to supply
the RMS current. Small ceramic capacitors should be placed
very close to the drain of the upper MOSFET to suppress the
voltage induced in the parasitic circuit impedances.
For bulk capacitance, several electrolytic capacitors
0.8
SINGLE
CHANNEL
(Panasonic HFQ series or Nichicon PL series or Sanyo
MV-GX or equivalent) may be needed. For surface mount
designs, solid tantalum capacitors can be used, but caution
0.6
0.4
0.2
3 CHANNEL
4 CHANNEL
2 CHANNEL
must be exercised with regard to the capacitor surge current
rating. These capacitors must be capable of handling the
surge-current at power-up. The TPS series available from
AVX, and the 593D series from Sprague are both surge
current tested.
MOSFET Selection and Considerations
0
0
0.1
0.2 0.3
DUTY CYCLE (V O /V IN )
0.4
0.5
In high-current PWM applications, the MOSFET power
dissipation, package selection and heatsink are the
dominant design factors. The power dissipation includes two
FIGURE 12. RIPPLE CURRENT vs DUTY CYCLE
Input Capacitor Selection
The important parameters for the bulk input capacitors are the
voltage rating and the RMS current rating. For reliable
operation, select bulk input capacitors with voltage and current
ratings above the maximum input voltage and largest RMS
current required by the circuit. The capacitor voltage rating
should be at least 1.25 times greater than the maximum input
voltage and a voltage rating of 1.5 times is a conservative
guideline. The RMS current required for a multi-phase
converter can be approximated with the aid of Figure 13.
0.5
SINGLE
loss components; conduction loss and switching loss. These
losses are distributed between the upper and lower
MOSFETs according to duty factor (see the following
equations). The conduction losses are the main component
of power dissipation for the lower MOSFETs, Q2 and Q4 of
Figure 1. Only the upper MOSFETs, Q1 and Q3 have
significant switching losses, since the lower device turns on
and off into near zero voltage.
The equations assume linear voltage-current transitions and
do not model power loss due to the reverse-recovery of the
lower MOSFETs body diode. The gate-charge losses are
dissipated by the Driver IC and don't heat the MOSFETs.
However, large gate-charge increases the switching time,
t SW which increases the upper MOSFET switching losses.
Ensure that both MOSFETs are within their maximum
0.4
CHANNEL
junction temperature at high ambient temperature by
calculating the temperature rise according to package
0.3
0.2
2 CHANNEL
thermal-resistance specifications. A separate heatsink may
be necessary depending upon MOSFET power, package
type, ambient temperature and air flow.
I O × r DS ( ON ) × V OUT
I O × V IN × t SW × F SW
P UPPER = ------------------------------------------------------------ + ----------------------------------------------------------
V IN
0.1
4 CHANNEL
3 CHANNEL
2
2
I O × r DS ( ON ) × ( V IN – V OUT )
V IN
0
0
0.1
0.2
0.3
0.4
0.5
2
P LOWER = ---------------------------------------------------------------------------------
DUTY CYCLE (V O /V IN )
FIGURE 13. CURRENT MULTIPLIER vs DUTY CYCLE
First determine the operating duty ratio as the ratio of the
output voltage divided by the input voltage. Find the Current
Multiplier from the curve with the appropriate power
channels. Multiply the current multiplier by the full load
output current. The resulting value is the RMS current rating
required by the input capacitor.
Use a mix of input bypass capacitors to control the voltage
overshoot across the MOSFETs. Use ceramic capacitance for
15
A diode, anode to ground, may be placed across Q2 and Q4.
These diodes function as a clamp that catches the negative
inductor swing during the dead time between the turn off of
the lower MOSFETs and the turn on of the upper MOSFETs.
The diodes must be a Schottky type to prevent the lossy
parasitic MOSFET body diode from conducting. It is usually
acceptable to omit the diodes and let the body diodes of the
lower MOSFETs clamp the negative inductor swing, but
efficiency could drop one or two percent as a result. The
diode's rated reverse breakdown voltage must be greater
than the maximum input voltage.
相关PDF资料
PDF描述
CAT1022WI-25-GT3 IC SUPERVISOR CPU 2K EEPR 8SOIC
RBM10DRST-S273 CONN EDGECARD 20POS DIP .156 SLD
CAT1021YI-45-GT3 IC SUPERVISOR CPU 2K EEPR 8TSSOP
HIP6311ACBZ-T IC REG CTRLR BUCK PWM 20-SOIC
EMM06DTBT-S273 CONN EDGECARD 12POS R/A .156 SLD
相关代理商/技术参数
参数描述
HIP6311ACBZ-T 功能描述:电流型 PWM 控制器 C4AM MULTI-PHS CONTR VID LVLS 5% AC RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
HIP6311CB 功能描述:IC REG CTRLR BUCK PWM 20-SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,000 系列:- PWM 型:电压模式 输出数:1 频率 - 最大:1.5MHz 占空比:66.7% 电源电压:4.75 V ~ 5.25 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:40-VFQFN 裸露焊盘 包装:带卷 (TR)
HIP6311CB-T 功能描述:IC REG CTRLR BUCK PWM 20-SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,000 系列:- PWM 型:电压模式 输出数:1 频率 - 最大:1.5MHz 占空比:66.7% 电源电压:4.75 V ~ 5.25 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:40-VFQFN 裸露焊盘 包装:带卷 (TR)
HIP6311CBZ 功能描述:电流型 PWM 控制器 2-4 PHS SYNCH BUCK CNTRLR 0 8%F RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
HIP6311CBZA 功能描述:电流型 PWM 控制器 W/ANL 2-4 PHS SYNCH BUCK CNTRLR 0 8%F RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14