参数资料
型号: ISL6620IRZ
厂商: Intersil
文件页数: 7/10页
文件大小: 0K
描述: IC SYNC RECT MOSFET DRVR 10-DFN
标准包装: 100
配置: 高端和低端,同步
输入类型: PWM
延迟时间: 40ns
电流 - 峰: 2A
配置数: 1
输出数: 2
高端电压 - 最大(自引导启动): 36V
电源电压: 4.5 V ~ 5.5 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 10-VFDFN 裸露焊盘
供应商设备封装: 10-DFN(3x3)
包装: 管件
产品目录页面: 1248 (CN2011-ZH PDF)
ISL6620, ISL6620A
Power-On Reset (POR) Function
During initial start-up, the VCC voltage rise is monitored. Once
the rising VCC voltage exceeds 3.8V (typically), operation of
the driver is enabled and the PWM input signal takes control
improvement suggestions. The total gate drive power losses
due to the gate charge of MOSFETs and the driver’s internal
circuitry and their corresponding average driver current can
be estimated using Equations 2 and 3, respectively:
of the gate drives. If VCC drops below the falling threshold of
3.5V (typically), operation of the driver is disabled.
P Qg_TOT = P Qg_Q1 + P Qg_Q2 + I Q ? VCC
(EQ. 2)
P Qg_Q1 = --------------------------------------- ? F SW ? N Q1
P Qg_Q2 = -------------------------------------- ? F SW ? N Q2
? Q G1 ? UVCC ? N Q1 Q G2 ? LVCC ? N Q2 ?
I DR = ? ------------------------------------------------------ + ----------------------------------------------------- ? ? F SW + I Q
Internal Bootstrap Device
ISL6620, ISL6620A features an internal bootstrap Schottky
diode. Simply adding an external capacitor across the BOOT
and PHASE pins completes the bootstrap circuit. The
bootstrap function is also designed to prevent the bootstrap
capacitor from overcharging due to the large negative swing
at the trailing-edge of the PHASE node. This reduces
voltage stress on the BOOT to PHASE pins.
1.6
1.4
1.2
1.0
0.8
0.6
Q GATE = 100nC
0.4
Q G1 ? UVCC 2
V GS1
Q G2 ? LVCC 2
V GS2
? V GS1 V GS2 ?
(EQ. 3)
where the gate charge (Q G1 and Q G2 ) is defined at a
particular gate to source voltage (V GS1 and V GS2 ) in the
corresponding MOSFET data sheet; I Q is the driver ’s total
quiescent current with no load at both drive outputs; N Q1
and N Q2 are number of upper and lower MOSFETs,
respectively; UVCC and LVCC are the drive voltages for
both upper and lower FETs, respectively. The I Q* VCC
product is the quiescent power of the driver without a load.
0.2
20nC
50nC
P DR = P DR_UP + P DR_LOW + I Q ? VCC
(EQ. 4)
P DR_UP = ? -------------------------------------- + ---------------------------------------- ? ? ---------------------
? R HI1 + R EXT1 R LO1 + R EXT1 ?
0.0
0.0
0.1
0.2
0.3
0.4 0.5 0.6
Δ V BOOT_CAP (V)
0.7
0.8
0.9
1.0
? R HI1 R LO1 ? P Qg_Q1
2
FIGURE 2. BOOTSTRAP CAPACITANCE vs BOOT RIPPLE
P DR_LOW = ? -------------------------------------- + ---------------------------------------- ? ? ---------------------
? R HI2 + R EXT2 R LO2 + R EXT2 ?
C BOOT_CAP ≥ --------------------------------------
Δ V BOOT_CAP
R EXT1 = R G1 + ------------- R EXT2 = R G2 + -------------
N N
Q GATE = ------------------------------- ? N Q1
VOLTAGE
The bootstrap capacitor must have a maximum voltage
rating well above the maximum voltage intended for VCC. Its
capacitance value can be estimated using Equation 1:
Q GATE
(EQ. 1)
Q G1 ? VCC
V GS1
where Q G1 is the amount of gate charge per upper MOSFET
at V GS1 gate-source voltage and N Q1 is the number of
control MOSFETs. The Δ V BOOT_CAP term is defined as the
allowable droop in the rail of the upper gate drive. Select
? R HI2 R LO2 ? P Qg_Q2
2
R GI1 R GI2
Q1 Q2
The total gate drive power losses are dissipated among the
resistive components along the transition path, as outlined in
Equation 4. The drive resistance dissipates a portion of the
total gate drive power losses, the rest will be dissipated by the
external gate resistors (R G1 and R G2 ) and the internal gate
resistors (R GI1 and R GI2 ) of MOSFETs. Figures 3 and 4 show
the typical upper and lower gate drives turn-on current paths.
results are exemplified in Figure 2.
UVCC
BOOT
Power Dissipation
Package power dissipation is mainly a function of the
switching frequency (F SW ), the output drive impedance, the
layout resistance, and the selected MOSFET’s internal gate
resistance and total gate charge (Q G ). Calculating the power
dissipation in the driver for a desired application is critical to
ensure safe operation. Exceeding the maximum allowable
R HI1
R LO1
G
R L1
C GD
R G1
C GS
S
D
C DS
Q1
power dissipation level may push the IC beyond the maximum
recommended operating junction temperature. The DFN
package is more suitable for high frequency applications. See
“Layout Considerations” on page 8 for thermal impedance
7
PHASE
FIGURE 3. TYPICAL UPPER-GATE DRIVE TURN-ON PATH
FN6494.0
April 25, 2008
相关PDF资料
PDF描述
NMN0.75BK75 NYLON MULTI 3/4" BLACK 75'
MBR2535CTG DIODE SCHOTTKY 35V 30A TO220AB
T95Z336K016CSSL CAP TANT 33UF 16V 10% 2910
ABM43DRMH CONN EDGECARD 86POS .156 WW
EEM18DRMT-S288 CONN EDGECARD 36POS .156 EXTEND
相关代理商/技术参数
参数描述
ISL6620IRZ-T 功能描述:IC MOSFET DVR SYNC BUCK 10-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:6,000 系列:*
ISL6622ACBZ 功能描述:IC MOSFET DRVR SYNC BUCK 8-SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:50 系列:- 配置:高端 输入类型:非反相 延迟时间:200ns 电流 - 峰:250mA 配置数:1 输出数:1 高端电压 - 最大(自引导启动):600V 电源电压:12 V ~ 20 V 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:8-DIP(0.300",7.62mm) 供应商设备封装:8-DIP 包装:管件 其它名称:*IR2127
ISL6622ACBZ-T 功能描述:IC MOSFET DRVR SYNC BUCK 8-SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:50 系列:- 配置:高端 输入类型:非反相 延迟时间:200ns 电流 - 峰:250mA 配置数:1 输出数:1 高端电压 - 最大(自引导启动):600V 电源电压:12 V ~ 20 V 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:8-DIP(0.300",7.62mm) 供应商设备封装:8-DIP 包装:管件 其它名称:*IR2127
ISL6622ACRZ 功能描述:IC MOSFET DRVR SYNC BUCK 10-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:50 系列:- 配置:高端 输入类型:非反相 延迟时间:200ns 电流 - 峰:250mA 配置数:1 输出数:1 高端电压 - 最大(自引导启动):600V 电源电压:12 V ~ 20 V 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:8-DIP(0.300",7.62mm) 供应商设备封装:8-DIP 包装:管件 其它名称:*IR2127
ISL6622ACRZ-T 功能描述:IC MOSFET DRVR SYNC BUCK 10-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:50 系列:- 配置:高端 输入类型:非反相 延迟时间:200ns 电流 - 峰:250mA 配置数:1 输出数:1 高端电压 - 最大(自引导启动):600V 电源电压:12 V ~ 20 V 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:8-DIP(0.300",7.62mm) 供应商设备封装:8-DIP 包装:管件 其它名称:*IR2127