参数资料
型号: LT1578IS8#TR
厂商: Linear Technology
文件页数: 18/28页
文件大小: 0K
描述: IC REG BUCK ADJ 1.5A 8SOIC
标准包装: 2,500
类型: 降压(降压)
输出类型: 可调式
输出数: 1
输出电压: 可调至 1.21V
输入电压: 4 V ~ 15 V
PWM 型: 电流模式
频率 - 开关: 200kHz
电流 - 输出: 1.5A
同步整流器:
工作温度: -40°C ~ 125°C
安装类型: 表面贴装
封装/外壳: 8-SOIC(0.154",3.90mm 宽)
包装: 带卷 (TR)
供应商设备封装: 8-SOIC
LT1578/LT1578-2.5
APPLICATIO N S I N FOR M ATIO N
I RIPPLE RMS = I OUT V OUT ( V IN ? V OUT ) / V IN
( )
because at 200kHz, any value above 15μF is essentially
resistive. RMS ripple current rating is the critical param-
eter. Actual RMS current can be calculated from:
2
The term inside the radical has a maximum value of 0.5
when input voltage is twice output, and stays near 0.5 for
a relatively wide range of input voltages. It is common
practice therefore to simply use the worst-case value and
assume that RMS ripple current is one half of load current.
At maximum output current of 1.5A for the LT1578, the
input bypass capacitor should be rated at 0.75A ripple
current. Note however, that there are many secondary
considerations in choosing the final ripple current rating.
These include ambient temperature, average versus peak
load current, equipment operating schedule, and required
product lifetime. For more details, see Application Notes
19 and 46, and Design Note 95.
Input Capacitor Type
Some caution must be used when selecting the type of
capacitor used at the input to regulators. Aluminum
electrolytics are lowest cost, but are physically large to
achieve adequate ripple current rating, and size con-
straints (especially height) may preclude their use.
Ceramic capacitors are now available in larger values, and
their high ripple current and voltage rating make them
ideal for input bypassing. Cost is fairly high and footprint
may also be somewhat large. Solid tantalum capacitors
would be a good choice, except that they have a history of
occasional spectacular failures when they are subjected to
large current surges during power-up. The capacitors can
short and then burn with a brilliant white light and lots of
nasty smoke. This phenomenon occurs in only a small
percentage of units, but it has led some OEMs to forbid
their use in high surge applications. The input bypass
capacitors of regulators can see these high surges when
a battery or high capacitance source is connected. Several
manufacturers have developed a line of solid tantalum
capacitors specially tested for surge capability (AVX TPS
18
series for instance, see Table 3), but even these units may
fail if the input voltage surge approaches the maximum
voltage rating of the capacitor. AVX recommends derating
capacitor voltage by 2:1 for high surge applications. The
highest voltage rating is 50V, so 25V may be a practical
input voltage upper limit when using solid tantalum ca-
pacitors for input bypassing.
Larger capacitors may be necessary when the input volt-
age is very close to the minimum specified on the data
sheet. Small voltage dips during switch on time are not
normally a problem, but at very low input voltage they may
cause erratic operation because the input voltage drops
below the minimum specification. Problems can also
occur if the input-to-output voltage differential is near
minimum. The amplitude of these dips is normally a
function of capacitor ESR and ESL because the capacitive
reactance is small compared to these terms. ESR tends to
be the dominate term and is inversely related to physical
capacitor size within a given capacitor type.
SYNCHRONIZING
The SYNC pin is used to synchronize the internal oscillator
to an external signal. The SYNC input must pass from a
logic level low, through the maximum synchronization
threshold with a duty cycle between 10% and 90%. The
input can be driven directly from a logic level output. The
synchronizing range is equal to initial operating frequency
up to 400kHz. This means that minimum practical sync
frequency is equal to the worst-case high self-oscillating
frequency (250kHz), not the typical operating frequency of
200kHz. Caution should be used when synchronizing
above 280kHz because at higher sync frequencies the
amplitude of the internal slope compensation used to
prevent subharmonic switching is reduced. This type of
subharmonic switching only occurs at input voltages less
than twice output voltage. Higher inductor values will tend
to eliminate this problem. See Frequency Compensation
section for a discussion of an entirely different cause of
subharmonic switching before assuming that the cause is
insufficient slope compensation. Application Note 19 has
more details on the theory of slope compensation.
相关PDF资料
PDF描述
HM79S-125821LFTR13 SHIELDED DRUM INDUCTORS
RCC44DCMD-S288 CONN EDGECARD 88POS .100 EXTEND
HM79S-125681LFTR13 SHIELDED DRUM INDUCTORS
LT1576IS8-5#TRPBF IC REG BUCK 5V 1.5A 8SOIC
EBC60DCMN-S288 CONN EDGECARD 120POS .100 EXTEND
相关代理商/技术参数
参数描述
LT1579 制造商:LINER 制造商全称:Linear Technology 功能描述:300mA Dual Input Smart Battery Backup Regulator
LT1579-3 制造商:LINER 制造商全称:Linear Technology 功能描述:300mA Dual Input Smart Battery Backup Regulator
LT1579CGN 功能描述:IC LDO REG SMART DUAL ADJ 16SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 电池管理 系列:- 标准包装:2,000 系列:Impedance Track™ 功能:燃料,电量检测计/监控器 电池化学:锂离子(Li-Ion) 电源电压:2.4 V ~ 2.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:20-TSSOP(0.173",4.40mm 宽) 供应商设备封装:20-TSSOP 包装:带卷 (TR) 产品目录页面:1020 (CN2011-ZH PDF) 配用:BQ27350EVM-ND - BQ27350EVM 其它名称:296-21665-2
LT1579CGN#PBF 功能描述:IC LDO REG SMART DUAL ADJ 16SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 电池管理 系列:- 标准包装:2,000 系列:Impedance Track™ 功能:燃料,电量检测计/监控器 电池化学:锂离子(Li-Ion) 电源电压:2.4 V ~ 2.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:20-TSSOP(0.173",4.40mm 宽) 供应商设备封装:20-TSSOP 包装:带卷 (TR) 产品目录页面:1020 (CN2011-ZH PDF) 配用:BQ27350EVM-ND - BQ27350EVM 其它名称:296-21665-2
LT1579CGN#TR 功能描述:IC REG LDO SMART DUAL ADJ 16SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 电池管理 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 功能:电池监控器 电池化学:碱性,锂离子,镍镉,镍金属氢化物 电源电压:1 V ~ 5.5 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-6 供应商设备封装:SOT-6 包装:带卷 (TR)