参数资料
型号: LT1725CGN#TR
厂商: Linear Technology
文件页数: 13/28页
文件大小: 0K
描述: IC REG CTRLR FLYBK ISO CM 16SSOP
标准包装: 2,500
PWM 型: 电流模式
输出数: 1
频率 - 最大: 125kHz
占空比: 90%
电源电压: 最高 22V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: 0°C ~ 100°C
封装/外壳: 16-SSOP(0.154",3.90mm 宽)
包装: 带卷 (TR)
相关产品: 732-2262-6-ND - TRANS FLYBACK LT1725 20.4UH
732-2262-1-ND - TRANS FLYBACK LT1725 20.4UH
732-2262-2-ND - TRANS FLYBACK LT1725 20.4UH
LT1725
APPLICATIO S I FOR ATIO
R OUT = ESR ?
R OCMP = K 1 ? SENSE ? ( R 1? N ST )
( R 1 + R 2 ) = ( V OUT F SEC ? ESR )
V BG ST
which reduces the size of the primary-referred flyback
pulse used for feedback. This will increase the output
voltage target by a similar percentage. Note that unlike
leakage spike behavior, this phenomena is load indepen-
dent. To the extent that the secondary leakage inductance
is a constant percentage of mutual inductance (over
manufacturing variations), this can be accommodated by
adjusting the feedback resistor divider ratio.
Winding Resistance Effects
Resistance in either the primary or secondary will act to
reduce overall efficiency (P OUT /P IN ). Resistance in the
secondary increases effective output impedance which
degrades load regulation, (at least before load compensa-
tion is employed).
Bifilar Winding
A bifilar or similar winding technique is a good way to
minimize troublesome leakage inductances. However re-
member that this will increase primary-to-secondary ca-
pacitance and limit the primary-to-secondary breakdown
voltage, so bifilar winding is not always practical.
Finally, the LTC Applications group is available to assist
in the choice and/or design of the transformer. Happy
Winding!
SELECTING FEEDBACK RESISTOR DIVIDER VALUES
The expression for V OUT developed in the Operation sec-
tion can be rearranged to yield the following expression for
the R1/R2 ratio:
+ V + I
R 2 ? N
where:
V OUT = desired output voltage
V F = switching diode forward voltage
I SEC ? ESR = secondary resistive losses
V BG = data sheet reference voltage value
N ST = effective secondary-to-third winding turns ratio
The above equation defines only the ratio of R1 to R2, not
their individual values. However, a “second equation for
two unknowns” is obtained from noting that the Thevenin
impedance of the resistor divider should be roughly 3k for
bias current cancellation and other reasons.
SELECTING R OCMP RESISTOR VALUE
The Operation section previously derived the following
expressions for R OUT , i.e., effective output impedance and
R OCMP , the external resistor value required for its nominal
compensation:
? 1 ?
? 1 – DC ? ?
? R ?
? R OUT ?
While the value for R OCMP may therefore be theoretically
determined, it is usually better in practice to employ
empirical methods. This is because several of the required
input variables are difficult to estimate precisely. For
instance, the ESR term above includes that of the trans-
former secondary, but its effective ESR value depends on
high frequency behavior, not simply DC winding resis-
tance. Similarly, K1 appears to be a simple ratio of V IN to
V OUT times (differential) efficiency, but theoretically esti-
mating efficiency is not a simple calculation. The sug-
gested empirical method is as follows:
Build a prototype of the desired supply using the eventual
secondary components. Temporarily ground the R CMPC
pin to disable the load compensation function. Operate the
supply over the expected range of output current loading
while measuring the output voltage deviation. Approxi-
mate this variation as a single value of R OUT (straight line
approximation). Calculate a value for the K1 constant
based on V IN , V OUT and the measured (differential) effi-
ciency. These are then combined with R SENSE as indicated
to yield a value for R OCMP .
Verify this result by connecting a resistor of roughly this
value from the R OCMP pin to ground. (Disconnect the
ground short to R CMPC and connect the requisite 0.1 μ F
filter capacitor to ground.) Measure the output impedance
1725fa
13
相关PDF资料
PDF描述
UCA2V330MHD1TN CAP ALUM 33UF 350V 20% RADIAL
B41042A3827M 820UF 10V 10X20 SINGLE END
LT3757HMSE#TRPBF IC REG CTRLR PWM CM 10-MSOP
LTC3830-1ES8#TRPBF IC REG CTRLR BUCK PWM VM 8-SOIC
ADM690SQ IC SUPERVISOR MPU 4.65V WD 8CDIP
相关代理商/技术参数
参数描述
LT1725CS 功能描述:IC REG CTRLR FLYBK ISO CM 16SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LT1725CS#PBF 功能描述:IC REG CTRLR FLYBK ISO CM 16SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LT1725CS#TR 功能描述:IC REG CTRLR FLYBK ISO CM 16SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LT1725CS#TRPBF 功能描述:IC REG CTRLR FLYBK ISO CM 16SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LT1725IGN 功能描述:IC REG CTRLR FLYBK ISO CM 16SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)