参数资料
型号: LTC1148CS
厂商: Linear Technology
文件页数: 12/20页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 14-SOIC
标准包装: 55
PWM 型: 电流模式
输出数: 1
频率 - 最大: 250kHz
占空比: 100%
电源电压: 3.5 V ~ 18 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: 0°C ~ 70°C
封装/外壳: 14-SOIC(0.154",3.90mm 宽)
包装: 管件
LTC1148
LTC1148-3.3/LTC1148-5
APPLICATIO S I FOR ATIO
LTC1148 DC supply current is 160 μ A for no load, and
increases proportionally with load up to a constant
100
GATE CHARGE
I 2 R
1.6mA after the LTC1148 series has entered continu-
ous mode. Because the DC bias current is drawn from
V IN , the resulting loss increases with input voltage. For
V IN = 10V the DC bias losses are generally less than 1%
for load currents over 30mA. However, at very low load
currents the DC bias current accounts for nearly all of
the loss.
95
90
85
LTC1148 I Q
2. MOSFET gate charge current results from switching the
80
0.01
0.03
0.1
0.3
1
3
gate capacitance of the power MOSFETs. Each time a
MOSFET gate is switched from low to high to low again,
a packet of charge dQ moves from V IN to ground. The
resulting dQ/dt is a current out of V IN which is typically
much larger than the DC supply current. In continuous
mode, I GATECHG = f (Q N + Q P ). The typical gate charge
for a 0.1 ? N-channel power MOSFET is 25nC, and for
a P-channel about twice that value. This results in
I GATECHG = 7.5mA in 100kHz continuous operation, for
a 2% to 3% typical mid-current loss with V IN = 10V.
Note that the gate charge loss increases directly with
both input voltage and operating frequency. This is the
principal reason why the highest efficiency circuits
operate at moderate frequencies. Furthermore, it ar-
gues against using larger MOSFETs than necessary to
control I 2 R losses, since overkill can cost efficiency as
well as money!
3. I 2 R losses are easily predicted from the DC resistances
of the MOSFET, inductor, and current shunt. In continu-
ous mode the average output current flows through L
and R SENSE , but is “chopped” between the P-channel
and N-channel MOSFETs. If the two MOSFETs have
approximately the same R DS(ON) , then the resistance of
one MOSFET can simply be summed with the resis-
tances of L and R SENSE to obtain I 2 R losses. For
example, if each R DS(ON) = 0.1 ? , R L = 0.15 ? , and
R SENSE = 0.05 ? , then the total resistance is 0.3 ? . This
results in losses ranging from 3% to 12% as the output
current increases from 0.5A to 2A. I 2 R losses cause the
efficiency to roll-off at high output currents.
Figure 5 shows how the efficiency losses in a typical
LTC1148 series regulator end up being apportioned.
OUTPUT CURRENT (A)
LTC1148 ? F05
Figure 5. Efficiency Loss
The gate charge loss is responsible for the majority of
the efficiency lost in the mid-current region. If Burst
Mode operation was not employed at low currents, the
gate charge loss alone would cause efficiency to drop to
unacceptable levels. With Burst Mode operation, the
DC supply current represents the lone (and unavoid-
able) loss component which continues to become a
higher percentage as output current is reduced. As
expected, the I 2 R losses dominate at high load currents.
Other losses including C IN and C OUT ESR dissipative
losses, MOSFET switching losses, Schottky conduction
losses during dead time, and inductor core losses, gener-
ally account for less than 2% total additional loss.
Design Example
As a design example, assume V IN = 12V (nominal),
V OUT = 5V, I MAX = 2A, and f = 200kHz; R SENSE , C T and L
can immediately be calculated:
R SENSE = 100mV/2 = 0.05 ?
t OFF = (1/200kHz)[1 – (5/12)] = 2.92 μ s
C T = 2.92 μ s/[(1.3)(10 4 )] = 220pF
L MIN = 5.1(10 5 )0.05 ? (220pF)5V = 28 μ H
Assume that the MOSFET dissipations are to be limited to
P N = P P = 250mW.
If T A = 50 ° C and the thermal resistance of each MOSFET
is 50 ° C/ W, then the junction temperatures will be 63 ° C
114835fd
12
相关PDF资料
PDF描述
VI-B2Z-EY-F1 CONVERTER MOD DC/DC 2V 20W
LTC1148CS-5 IC REG CTRLR BUCK PWM CM 14-SOIC
VI-B2Z-EX-F4 CONVERTER MOD DC/DC 2V 30W
LTC1148CS-3.3#PBF IC REG CTRLR BUCK PWM CM 14-SOIC
VI-B2Z-EX-F3 CONVERTER MOD DC/DC 2V 30W
相关代理商/技术参数
参数描述
LTC1148CS#PBF 功能描述:IC REG CTRLR BUCK PWM CM 14-SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 特色产品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 标准包装:1 系列:PowerWise® PWM 型:电压模式 输出数:1 频率 - 最大:1MHz 占空比:81% 电源电压:4.5 V ~ 18 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-5°C ~ 125°C 封装/外壳:32-WFQFN 裸露焊盘 包装:Digi-Reel® 产品目录页面:1303 (CN2011-ZH PDF) 其它名称:LM3754SQDKR
LTC1148CS#TR 功能描述:IC REG CTRLR BUCK PWM CM 14-SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1148CS#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 14-SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1148CS-3.3 功能描述:IC REG CTRLR BUCK PWM CM 14-SOIC RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1148CS-3.3#PBF 功能描述:IC REG CTRLR BUCK PWM CM 14-SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX