参数资料
型号: LTC1438XCG
厂商: Linear Technology
文件页数: 14/32页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 28-SSOP
标准包装: 47
PWM 型: 电流模式
输出数: 2
频率 - 最大: 138kHz
占空比: 99%
电源电压: 3.5 V ~ 30 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: 0°C ~ 70°C
封装/外壳: 28-SSOP(0.209",5.30mm 宽)
包装: 管件
LTC1438/LTC1439
APPLICATIO N S I N FOR M ATIO N
Main Switch Duty Cycle = OUT
The peak-to-peak drive levels are set by the INTV CC volt-
age. This voltage is typically 5V during start-up (see
EXTV CC Pin Connection). Consequently, logic level thresh-
old MOSFETs must be used in most LTC1438/LTC1439
applications. The only exception is applications in which
EXTV CC is powered from an external supply greater than
8V (must be less than 10V), in which standard threshold
MOSFETs (V GS(TH) < 4V) may be used. Pay close attention
to the BV DSS specification for the MOSFETs as well; many
of the logic level MOSFETs are limited to 30V or less.
Selection criteria for the power MOSFETs include the "ON"
resistance R SD(ON) , reverse transfer capacitance C RSS ,
input voltage and maximum output current. When the
LTC1438/LTC1439 are operating in continuous mode the
duty cycles for the top and bottom MOSFETs are given by:
V
V IN
efficiency. The synchronous MOSFET losses are greatest
at high input voltage or during a short circuit when the duty
cycle in this switch is nearly 100%. Refer to the Foldback
Current Limiting section for further applications information.
The term (1 + δ ) is generally given for a MOSFET in the form
of a normalized R DS(ON) vs Temperature curve, but
δ = 0.005/ ° C can be used as an approximation for low
voltage MOSFETs. C RSS is usually specified in the MOSFET
characteristics. The constant k = 2.5 can be used to
estimate the contributions of the two terms in the main
switch dissipation equation.
The Schottky diode D1 shown in Figure 1 serves two
purposes. During continuous synchronous operation, D1
conducts during the dead-time between the conduction of
the two large power MOSFETs. This prevents the body
diode of the bottom MOSFET from turning on and storing
charge during the dead-time, which could cost as much as
1% in efficiency. During low current operation, D1 oper-
ates in conjunction with the small top MOSFET to provide
( V IN OUT )
Synchronous Switch Duty Cycle =
– V
V IN
an efficient low current output stage. A 1A Schottky is
generally a good compromise for both regions of opera-
tion due to the relatively small average current.
P MAIN = OUT ( I MAX ) ( ) R DS ( ON ) +
The  MOSFET  power  dissipations  at  maximum  output
current are given by:
V 2
1 + δ
V IN
C IN and C OUT Selection
In continuous mode, the source current of the top
N-channel MOSFET is a square wave of duty cycle V OUT /
V IN . To prevent large voltage transients, a low ESR input
capacitor sized for the maximum RMS current must be
k ( V IN )
1.85
( I MAX )( C RSS )( ) f
used. The maximum RMS capacitor current is given by:
P SYNC = IN OUT ( I MAX ) ( ) R DS ( ON )
V – V 2
V IN
1 + δ
C IN Required I RMS ≈ I MAX
[ V OUT ( V IN – V OUT ) ] 1 / 2
V IN
where δ is the temperature dependency of R DS(ON) and k
is a constant inversely related to the gate drive current.
Both MOSFETs have I 2 R losses while the topside
N-channel equation includes an additional term for transi-
tion losses, which are highest at high input voltages. For
V IN < 20V the high current efficiency generally improves
with larger MOSFETs, while for V IN > 20V the transition
losses rapidly increase to the point that the use of a higher
R DS(ON) device with lower C RSS actual provides higher
This formula has a maximum at V IN = 2V OUT , where I RMS
= I OUT /2. This simple worst-case condition is commonly
used for design because even significant deviations do not
offer much relief. Note that capacitor manufacturer’s ripple
current ratings are often based on only 2000 hours of life.
This makes it advisable to further derate the capacitor or to
choose a capacitor rated at a higher temperature than
required. Several capacitors may also be paralleled to meet
size or height requirements in the design. Always consult
the manufacturer if there is any question.
14389fb
14
相关PDF资料
PDF描述
H2AAT-10104-R8-ND JUMPER-H1502TR/A3048R/H1502TR 4"
ISC1210EB180J INDUCTOR WW 18UH 5% 1210
LTC1629IG-PG#TR IC REG CTRLR BUCK PWM CM 28-SSOP
LTC1629IG-PG#TRPBF IC REG CTRLR BUCK PWM CM 28-SSOP
LTC1629IG#TRPBF IC REG CTRLR BUCK PWM CM 28-SSOP
相关代理商/技术参数
参数描述
LTC1438XCG#PBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1438XCG#TR 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1438XCG#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1439CG 功能描述:IC REG CTRLR BUCK PWM CM 36-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)
LTC1439CG#PBF 功能描述:IC REG CTRLR BUCK PWM CM 36-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)